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Abstract

In this paper we give subexponential size hitting sets for bounded depth multilinear
arithmetic formulas. Using the known relation between black-box PIT and lower bounds
we obtain lower bounds for these models.

For depth-3 multilinear formulas, of size exp(nδ), we give a hitting set of size

exp
(
Õ
(
n2/3+2δ/3

))
. This implies a lower bound of exp(Ω̃(n1/2)) for depth-3 multilin-

ear formulas, for some explicit polynomial.
For depth-4 multilinear formulas, of size exp(nδ), we give a hitting set of size

exp
(
Õ
(
n2/3+4δ/3

))
. This implies a lower bound of exp(Ω̃(n1/4)) for depth-4 multilin-

ear formulas, for some explicit polynomial.
A regular formula consists of alternating layers of +,× gates, where all gates at layer i

have the same fan-in. We give a hitting set of size (roughly) exp
(
n1−δ

)
, for regular depth-d

multilinear formulas with formal degree at most n and size exp(nδ), where δ = O(1/
√

5
d
).

This result implies a lower bound of roughly exp(Ω̃(n1/
√
5
d

)) for such formulas.
We note that better lower bounds are known for these models, but also that none of

these bounds was achieved via construction of a hitting set. Moreover, no lower bound
that implies such PIT results, even in the white-box model, is currently known.

Our results are combinatorial in nature and rely on reducing the underlying formula,
first to a depth-4 formula, and then to a read-once algebraic branching program (from
depth-3 formulas we go straight to read-once algebraic branching programs).
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1 Introduction

Arithmetic circuits are the standard model for computing polynomials. Roughly speaking,
given a set of variablesX = {x1, ..., xn}, an arithmetic circuit uses additions and multiplications
to compute a polynomial f in the set of variables X. An arithmetic formula is an arithmetic
circuit whose computation graph is a tree. An arithmetic circuit (or formula) is multilinear if
the polynomial computed at each of its gates is multilinear (as a formal polynomial), that is,
in each of its monomials the power of every input variable is at most one (see Section 1.1 for
definition of the models studied in this paper).

Two outstanding open problems in complexity theory are to prove exponential lower bounds
on the size of arithmetic circuits, i.e., to prove a lower bound on the number of operations
required to compute some polynomial f , and to give efficient deterministic polynomial identity
testing (PIT for short) algorithms for them. The PIT problem for arithmetic circuits asks
the following question: given an arithmetic circuit Φ computing a polynomial f , determine,
efficiently and deterministically, whether “f ≡ 0”. The black-box version of the PIT problem
asks to construct a small hitting set, i.e., a set of evaluation points H, for which any such
non-zero f does not vanish on all the points in H.

It is known that solving any one of the problems (proving a lower bound or deterministic
PIT), with appropriate parameters, for small depth (multilinear) formulas, is equivalent to
solving it in the general (multilinear) case [VSBR83, AV08, Koi10, GKKS13, Tav13]. It is
also known that these two problems are tightly connected and that solving one would imply a
solution to the other, both in the general case [HS80, KI03, Agr05] and in the bounded depth
case1 [DSY09]. We note that in the multilinear case it is only known that hitting sets imply
circuit lower bounds but not vice versa.

In this work we study the PIT problem for several models of bounded depth multilin-
ear formulas. Our main results are subexponential size hitting sets for depth-3 and depth-4
multilinear formulas of subexponential size and for regular depth-d multilinear formulas of
subexponential size (with construction size deteriorating among the different models). Using
the connection between explicit hitting sets and circuit lower bounds we get, as corollaries,
subexponential lower bounds for these models.

1.1 Models for Computing Multilinear Polynomials

An arithmetic circuit Φ over the field F and over the set of variables X is a directed acyclic
graph as follows. Every vertex in Φ of in-degree 0 is labelled by either a variable in X or a
field element in F. Every other vertex in Φ is labelled by either × or +. An arithmetic circuit
is called a formula if it is a directed tree (whose edges are directed from the leaves to the root).
The vertices of Φ are also called gates. Every gate of in-degree 0 is called an input gate. Every
gate of out-degree 0 is called an output gate. Every gate labelled by × is called a product gate.
Every gate labelled by + is called a sum gate. An arithmetic circuit computes a polynomial
in a natural way. An input gate labelled by y ∈ F∪X computes the polynomial y. A product

1The result of [DSY09] is more restricted than the results for circuits with no depth restrictions.
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gate computes the product of the polynomials computed by its children. A sum gate computes
the sum of the polynomials computed by its children.

A polynomial f ∈ F[X] is called multilinear if the degree of each variable in f is at most
one. An arithmetic circuit (formula) Φ is called multilinear if every gate in Φ computes a
multilinear polynomial.

In this work we are interested in small depth multilinear formulas. A depth-3 ΣΠΣ formula
is a formula composed of three layers of alternating sum and product gates. Thus, every
polynomial computed by a ΣΠΣ formula of size s has the following form

f =
s∑
i=1

di∏
j=1

`i,j ,

where the `i,j are linear functions. In a ΣΠΣ multilinear formula, it holds that in every product

gate
∏di
j=1 `i,j , the linear functions `i,1, . . . , `i,di are supported on disjoint sets of variables.

Similarly, a depth-4 ΣΠΣΠ formula is a formula composed of four layers of alternating sum
and product gates. Thus, every polynomial computed by a ΣΠΣΠ formula of size s has the
following form

f =

s∑
i=1

di∏
j=1

Qi,j ,

where the Qi,j are computed at the bottom ΣΠ layers and are s-sparse polynomials, i.e.,
polynomials that have at most s monomials. As in the depth-3 case, we have that at every
product gate the polynomials Qi,1, . . . , Qi,di are supported on disjoint sets of variables.

Another important definition for us is that of a regular depth-d formula. A regular depth-d
formula is specified by a list of d integers (a1, p1, a2, p2, . . .). It has d layers of alternating sum
and product gates. The fan-in of every sum gate at the (2i − 1)’th layer is ai and, similarly,
the fan-in of every product gate at the (2i)’th layer is pi. For example, a depth-4 formula that
is specified by the list (a1, p1, a2, p2) has the following form:

f =

a1∑
i=1

p1∏
j=1

Qi,j ,

where each Qi,j is a polynomial of degree p2 that has (at most) a2 monomials. As before, a
regular depth-d multilinear formula is a regular depth-d formula in which every gate computes
a multilinear polynomial. For such formulas, we also impose the restriction that their formal
degree is at most n, i.e.,

∏
i pi ≤ n.

Regular formulas were first defined by Kayal, Saha and Saptharishi [KSS14], who proved
quasi-polynomial lower bounds for logarithmic-depth regular formulas. It is interesting to note
that in the reductions from general (multilinear) circuits/formulas to depth-d (multilinear)
formulas, one gets a regular depth-d (multilinear) formula [VSBR83, AV08, Koi10, Tav13].

Finally, we also need to consider the model of Read-Once Algebraic Branching Programs
(ROABPs) as our construction is based on a reduction to this model. Algebraic Branching
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Programs (or ABPs, for short) were first defined in the work of Nisan [Nis91], who proved
exponential lower bounds on the size of non-commutative ABPs computing the determinant or
permanent polynomials. Roughly, an ABP consists of a layered graph with edges going from
the i’th layer to the (i+1)’th layer. The first layer consists of a single source node and the last
layer contains a single sink. The edges of the graph are labeled with polynomials (in our case
we only consider linear functions as labels). The weight of a path is the product of the weights
of the edges in the path. The polynomial computed by the ABP is the sum of the weights
of all the paths from the source to the sink. An ABP is called a read-once ABP (ROABP) if
the only variable appearing on edges that connect the i’th and the (i + 1)’th layer is xi. It
is clear that a ROABP whose edges are labeled with linear functions computes a multilinear
polynomial.

1.2 Polynomial Identity Testing

In the PIT problem we are given an arithmetic circuit or formula Φ, computing some polynomial
f , and we have to determine whether “f ≡ 0”. That is, we are asking if f is the zero polynomial
in F[x1, . . . , xn]. By the Schwartz-Zippel-DeMillo-Lipton lemma [Zip79, Sch80, DL78], if 0 6=
f ∈ F[x1, . . . , xn] is a polynomial of degree ≤ d, and α1, . . . , αn ∈ A ⊆ F are chosen uniformly
at random, then f(α1, . . . , αn) = 0 with probability at most2 d/|A|. Thus, given Φ, we can
perform these evaluations efficiently, giving an efficient randomized procedure for answering
“f ≡ 0?”. It is an important open problem to find a derandomization of this algorithm, that
is, to find a deterministic procedure for PIT that runs in polynomial time (in the size of Φ).

One interesting property of the above randomized algorithm of Schwartz-Zippel-DeMillo-
Lipton is that the algorithm does not need to “see” the circuit Φ. Namely, the algorithm only
uses the circuit to compute the evaluation f(α1, . . . , αn). Such an algorithm is called a black-
box algorithm. In contrast, an algorithm that can access the internal structure of the circuit
Φ is called a white-box algorithm. Clearly, the designer of the algorithm has more resources in
the white-box model and so one can expect that solving PIT in this model should be a simpler
task than in the black-box model.

The problem of derandomizing PIT has received a lot of attention in the past few years.
In particular, many works examine a specific class of circuits C, and design PIT algorithms
only for circuits in that class. One reason for this attention is the strong connection between
deterministic PIT algorithms for a class C and lower bounds for C. This connection was first
observed by Heintz and Schnorr [HS80] (and later also by Agrawal [Agr05]) for the black-box
model and by Kabanets and Impagliazzo [KI04] for the white-box model (see also [DSY09] for
a similar result for bounded depth circuits). Another motivation for studying the problem is
its relation to algorithmic questions. Indeed, the famous deterministic primality testing algo-
rithm of Agrawal, Kayal and Saxena [AKS04] is based on derandomizing a specific polynomial
identity. Finally, the PIT problem is, in some sense, the most general problem that we know
today for which we have randomized coRP algorithms but no polynomial time algorithms, thus
studying it is a natural step towards a better understanding of the relation between RP and
P. For more on the PIT problem we refer to the survey by Shpilka and Yehudayoff [SY10].

2Note that this is meaningful only if d < |A| ≤ |F|, which in particular implies that f is not the zero function.
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Among the most studied circuit classes we find Read-Once Algebraic Branching Programs
[FS13, FSS14, AGKS15, GKST15], set-multilinear formulas [RS05, FS12, ASS13], depth-3
formulas [DS06, KS07, KS11, KS09, SS11], depth-4 formulas [KMSV13, SV11, ASSS12, Gup14]
and bounded-read multilinear formulas [SV08, SV09, AvMV11, ASSS12]. We note that none of
these results follow from a reduction a la [KI04] (or the reduction of [DSY09] for bounded depth
circuits) from PIT to lower bounds. Indeed, this reduction does not work for the restricted
classes mentioned here. In particular, for the multilinear model no reduction from PIT to
lower bounds is known. That is, even given lower bounds for multilinear circuits/formulas
(e.g., the subexponential lower bound of [RY09] for constant depth multilinear formulas) we
do not know how to construct a PIT algorithm for a related model.

The works on depth-3 and multilinear depth-4 formulas gave polynomial time algorithms
only when the fan-in of the top gate (the output gate) is constant, and became exponential
time when the top fan-in was Ω(n), both in the white-box and black-box models [KS07, SS11,
SV11, Gup14]. [RS05] gave a polynomial time PIT for set-multilinear depth-3 circuits and
[FS13] and [ASS13] gave a quasi-polynomial size hitting set for this model. Recall that in a
depth-3 set-multilinear formula, the variables are partitioned to sets, and each linear function
at the bottom layer only involves variables from a single set.

Recently, [AGKS15] gave a subexponential white-box algorithm for a depth-3 formula that
computes the sum of c set-multilinear formulas, each of size s, with respect to different parti-

tions of the variables. The running time of their algorithm is nO(2cn1−2/2c log s). In particular,
for c = Ω(log log(n)) the running time is exp(n). Shortly after, [GKST15] gave a white box
algorithm for sums of c ROABPs, that runs in time (ndw2c)O(c) for ROABPs with n vari-
ables, individual degree d and width w. They also give a black box algorithm that runs
in time (ndw)O(c2c log(ndw)). Thus, while for constant c this gives a significant improvement
over [AGKS15] for this model, the doubly exponential dependence on c still trivializes those
constructions if c = Ω(log n).

To conclude, prior to this work there were no subexponential PIT algorithms, even for
depth-3 multilinear formulas with top fan-in n.

1.3 Our Results

Remark. Throughout this paper, we assume that for formulas of size 2n
δ
, the underlying field

F is of size at least |F| ≥ 2n
2δpoly log(n), and that if this is not the case then we are allowed to

query the formula on inputs from an extension field of the appropriate size. In particular, all
our results hold over fields of characteristic zero or over fields of size exp(n).

We give subexponential size hitting sets for depth-3, depth-4 and regular depth-d multilin-
ear formulas, of subexponential size. In particular we obtain the following results.

Theorem 1.1. There exists an explicit hitting set H of size 2Õ(n2/3+2δ/3) for the class of ΣΠΣ
multilinear formulas of size 2n

δ
.

This gives a significant improvement to the recent result, mentioned above, of [AGKS15]
who studied sums of set-multilinear formulas. From the connection between hitting sets and
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circuit lower bounds [HS80, Agr05] we obtain the following corollary.

Corollary 1.2. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any depth-3 multilinear formula for f
has size exp(Ω̃(

√
n)).

This lower bound is weaker than the exponential lower bound of [NW96] for this model .3

Yet, it is interesting to note that we can get such a strong lower bound from a PIT algorithm.
Next, we present our result for depth-4 multilinear formulas.

Theorem 1.3. There exists an expicit hitting set H of size 2Õ(n2/3+4δ/3) for the class of ΣΠΣΠ
multilinear formulas of size 2n

δ
.

Again, from the connection between hitting sets and circuit lower bounds we obtain the
following corollary.

Corollary 1.4. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any depth-4 multilinear formula for f
has size exp(Ω̃(n1/4)).

The best known lower bound for depth-4 multilinear formulas is exp(n1/2) due to [RY09],
thus, as in the previous case, the term in the exponent of our lower bound is the square root
of the corresponding term in the best known lower bound. For regular depth-d multilinear
formulas we obtain the following result.

Theorem 1.5. There exists an explicit hitting set H of size 2Õ(n1−δ/3) for the class of regular

depth-d multilinear formulas of size 2n
δ
, where δ ≤ 1

5bd/2c+1 = O
(

1√
5
d

)
.

As before we obtain a lower bound for such formulas.

Corollary 1.6. There is an explicit multilinear polynomial f ∈ F[x1, . . . , xn], whose coeffi-
cients can be computed in exponential time, such that any regular depth-d multilinear formula

for f has size exp(Ω̃(n
1

5bd/2c+1 )).

We note that Raz and Yehudayoff gave an exp(nΩ( 1
d

)) lower bound for depth-d multilinear
formulas, which is much stronger than what Corollary 1.6 gives. Yet, our result also gives a
PIT algorithm, which does not follow from the results of [RY09]. As we later explain, we lose
a square root in the term at the exponent for every increase of the depth and this is the reason
that we get only exp(n1/ exp(d)) instead of exp(n1/d).

In addition to lower bounds, our work also implies deterministic factorization of multilinear
polynomials. [SV10] proved that if one can perform PIT deterministically for certain classes
of multilinear polynomials then a deterministic factoring algorithm for those classes follows.
Specifically, for a class of polynomials C they defined the class CV , consisting of all polynomials
that can be computed by circuits of the form C = C1 +C2 ×C3, where the circuits Ci belong

3It is also weaker in the sense that the lower bound of Nisan and Wigderson applies to a polynomial in VP,
the arithmetic analog of P, whereas our lower bound is for a polynomial in DTIME(2O(n)).
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to the class C and the circuits C2 and C3 are defined over disjoint sets of variables. They
proved that if the class CV has a deterministic PIT that runs in time T (n, s) for circuits on n
variables of size s then there is a deterministic factoring algorithm for the class C that runs in
time O(n3 ·T (n, s)) (Theorem 1.1 in [SV10]). Furthermore, if C is a multilinear circuit class, f
is a polynomial computed by a size s circuit from C and g is a factor of f , then g can also be
computed by a circuit from C of size at most s (this follows from the fact that the irreducible
factors of f are variable disjoint; we again refer to [SV10] for the details).

In our case, since the product of two variable disjoint multilinear ΣΠΣ (ΣΠΣΠ) formulas

of size 2n
δ

is a multilinear ΣΠΣ (ΣΠΣΠ) formula of size 22nδ , which is still inside of the class
ΣΠΣ (ΣΠΣΠ), the result of [SV10], when combined with our PIT results, implies that we can
deterministically factor such formulas. Therefore, we obtain the following corollary:

Corollary 1.7 (Deterministic Factorization). Given a multilinear polynomial f ∈ F[x1, . . . , xn]

that can be computed by a ΣΠΣ (ΣΠΣΠ) formula of size 2n
δ
, there exists an efficient determin-

istic algorithm that outputs the factors of f . The algorithm outputs ΣΠΣ (ΣΠΣΠ) formulas for
the factors if the formula for f is given to it explicitly, and black-boxes if it only has black-box
access to f . The running time of this algorithm is 2Õ(n2/3+2δ/3) when f is computed by a ΣΠΣ
formula and 2Õ(n2/3+4δ/3) when it is computed by a ΣΠΣΠ formula.

1.4 Proof Overview

We first discuss our proof technique for the case of depth-3 multilinear formulas. Our (idealized)
aim is to reduce such a formula Φ to a depth-3 multilinear formula in which each linear function
is of the form αx+β. That is, each linear function contains at most one variable. If we manage
to do that then we can use the quasi-polynomial sized hitting set of [FS13, AGKS15] for this
model.

Of course, the problem with the above argument is that in general, depth-3 formulas have
more than one variable per linear function. To overcome this difficulty, we will partition the
variables to several sets T1, . . . , Tm and hope that each linear function in the formula contains
at most one variable from each Ti. If we can do that then we would use the hitting set for each
set of variables Ti and combine those sets together to get our hitting set. That is, the combined
hitting set is constructed by “concatenating” the smaller hitting sets, so that it contains all
vectors v ∈ Fn such that the restriction of v to the indices of Ti belongs to the hitting set
constructed for the variables of Ti. Thus, if we can carry out this procedure then we will get a
hitting set of size roughly nm logn. This step indeed yields a hitting set, since when we restrict
our attention to each Ti and think of the other variables as constants in some huge extension
field, then we do get a small ROABP (in the variables of Ti) and hence plugging in the hitting
set of [FS13] and [AGKS15] gives a non-zero polynomial. Thus, we can first do this for T1 and
obtain some good assignment v1 that makes the polynomial non-zero after substituting the
variables in T1 to v1. Then we can find v2, etc.

There are two problems with the above argument. One problem is how to find such a good
partition. The second is that this idea simply cannot work as is. For example, if we have the
linear function x1 + · · ·+ xn, then it will have a large intersection with each Ti.
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We first deal with the second question. To overcome the difficulty posed by the example,
we would like to somehow “get rid” of all linear functions of large support and then carry out
the idea above. To remove linear functions with large support from the formula we use another
trick. Consider a variable xk that appears in a linear function `0 that has a large support.
Assume that ∂f

∂xk
6≡ 0 as otherwise we can ignore xk. Now, because of multilinearity, we can

transform our original formula Φ to a formula computing ∂f
∂xk

. This is done by replacing each

linear function `(X) =
∑n

i=1 αixi+α0 with the constant αk. In particular, the function `0 that
used to have a high support does not appear in the new formula. Furthermore, this process
does not increase the support size of any other linear function. A possible issue is that if we
have to repeat this process for every function of large support then it seems that we need to
take a fresh derivative for every such linear function. The point is that because we only care
about linear functions that have a large support to begin with, we can find a variable that
simultaneously appears in many of those functions and thus one derivative will eliminate many
of the “bad” linear functions. Working out the parameters, we see that we need to take roughly
nε · log |Φ| many derivatives to reduce to the case where all linear functions have support size
at most n1−ε. We can then “lift” the hitting set obtained for the derivative to a hitting set for
the original polynomial, with a cost which is exponential in the number of the derivatives we
took.

Now we go back to our first problem. We can assume that we have a depth-3 formula in
which each linear function has support size at most n1−ε and we wish to find a partition of the
variables to sets T1, . . . , Tm so that each Ti contains at most one variable from each linear func-
tion. This cannot be achieved for our choice of parameters, as shown by a simple probabilistic
argument, so we relax our requirement and only demand that in each multiplication gate (of
the formula) only a few linear functions have a large intersection. If at most k linear functions
in each gate have a large intersection, we can expand each multiplication gate to at most nk

new gates (by simply taking the product of all linear functions that have large intersection)
and then apply our argument. As we will be able to handle subexponential size formulas, this
blow up is tolerable for us.

Note that if we were to pick the partition at random, when m = n1−ε+γ , for some small
γ, then we will get that with a very high probability at most nδ linear functions will have
intersection at least nδ with each Ti, where δ is such that |Φ| < exp(nδ). To get a deterministic
version of this partitioning, we simply use an nδ-wise independent family of hash functions {h :
[n]→ [m]}. Each hash function h induces a partition of the variables to Ti = {xk | h(k) = i}.
Because of the high independence, we are guaranteed that there is at least one hash function
that induces a good partition.

Now we have all the ingredients in place. To get our hitting set we basically do the
following (we describe the construction as a process, but it should be clear that every step can
be performed using some evaluation vectors).

1. Pick nε · log |Φ| many variables and compute a black-box for the polynomial that is
obtained by taking the derivative of f with respect to those variables. The cost of this
step is roughly

(
n

nε·log |Φ|
)
· 2nε·log |Φ|, where the first term accounts for trying all possible

choices of nε · log |Φ| variables and the second is what we have to pay to get access to the
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derived polynomial.

2. Partition the remaining variables to (roughly) n1−ε/2 many sets using a (roughly) log |Φ|-
wise independent family of hash functions. The cost of this step is roughly nlog |Φ| as this
is the size of the hash function family.

3. Plug in a fresh copy of the hitting set of [FS13] and [AGKS15] to each of the sets of

variables Ti. The cost is roughly nlogn·n1−ε/2
.

Combining everything we get a hitting set of size roughly((
n

nε · log |Φ|

)
· 2nε·log |Φ|

)
·
(
nlog |Φ|

)
·
(
nlogn·n1−ε/2

)
≈

2Õ(n1−ε/2+nε log |Φ|).

Optimizing the parameters we get our hitting set.

We would like to use the same approach also for the case of depth-4 formulas. Here the
problem is that in the two bottom layers the formula computes a polynomial and not a linear
function. In particular, when taking a derivative we are no longer removing functions that
have a large support. Nevertheless, we can still use a similar idea. We show that there is a
variable xi such that by either setting f |xi=0 or considering ∂f

∂xi
, we are guaranteed that the

total sparsity of all polynomials that have large support goes down by some non-negligible
factor. Thus, repeating this process (of either setting a variable to 0 or taking a derivative)
nε · log |Φ| many times we reach a depth-4 formula where all polynomials computed at the
bottom addition gate have small support. Next, we partition the variables to sets and consider
a single set Ti. Now, another issue is that even if the intersection of a low-support polynomial
with some Ti is rather small, the sparsity of the resulting polynomial (which is considered
as a polynomial in the variable in the intersection) can still be exponential in the size of the
intersection. This is why we lose a bit in the upper bound compared to the depth-3 case.
Combining all steps again we get the result for depth-4 formulas.

The proof for regular formulas works by first reducing to the depth-4 case and then applying
our hitting set. The reduction is obtained in a similar spirit to the reduction of [KSS14]. We
break the formula at an appropriate layer and then express the top layers as a ΣΠ circuit and
the bottom layers as products of polynomials of not too high degree. We then use the trivial
observation that if the degree of a polynomial is at most n1−ε then its sparsity is at most nn

1−ε

and proceed as before. Due to the different requirements of the reduction and of the hashing
part, we roughly lose a constant factor in the exponent of n, in the size of the hitting set,
whenever the depth grows, resulting in a hitting set of size roughly exp(n1−1/ exp(d)).

To obtain the lower bounds we simply use the idea of [HS80] and [Agr05]. That is, given a
hitting set we find a non-zero multilinear polynomial that vanishes on all points of the hitting
set by solving a homogeneous system of linear equations.
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1.5 Related Work

The work of [AGKS15]: The closest work to ours is the one by [AGKS15]. In addition

to other results, they gave a white-box PIT algorithm that runs in time nO(2cn1−2/2c log s) for
depth-3 formulas that can be represented as a sum of c set-multilinear formulas, each of size s
(potentially with respect to different partitions of the variables).

Theorem 1.1 improves upon this results in several ways. First, the theorem gives a hitting
set, i.e., a black-box PIT. Secondly, for c = O(log log n) the running time of the algorithm
of [AGKS15] is exp(n), whereas our construction can handle a sum of exp(nβ) set-multilinear
formulas and still maintain a subexponential complexity (recall that also the improvement in
[GKST15] requires exponential running time for c = O(log n)).

However, there are some similarities behind the basic approach of this work and the work
of Agrawal et al. Recall that a set-multilinear depth-3 formula is based on a partition of the
variables, where each linear function in the formula contains variables from a single partition.
Agrawal et al. start with a sum of c set-multilinear circuits, each with respect to a different
partitioning of the variables, and their first goal is to reduce the formula to a set-multilinear
formula, i.e., to have only one partition of the variables. For this they define a distance
between different partitions and show, using an involved combinatorial argument, that one can
find some partition T1, . . . , Tm of the variables so that when restricting our attention to Ti,
all the c set-multilinear formulas will be somewhat “close to each other”. If the distance is ∆
(according to their definition) then they prove that they can express the sum as a ROABP of
size roughly s · n∆, where s is the total size of the depth-3 formula. Unlike our work, they
find the partition in a white-box manner by gradually refining the given c partitions of the
set-multilinear circuits composing the formula. The final verification step is done, in a similar
manner to ours, by substituting the hitting set of [ASS13] (or that of [FS13]) to each of the
sets Ti. The step of finding the partition T1, . . . , Tm is technically involved and is the only step
where white-box access is required.

Lower bounds for multilinear circuits and formulas: Lower bounds for the multi-
linear model were first proved by [NW96], who gave exponential lower bounds for depth-3
formulas. Raz first proved quasi-polynomial lower bounds for multilinear formulas comput-
ing the Determinant and Permanent polynomials [Raz09] and later gave a separation between

multilinear NC1 and multilinear NC2 [Raz06]. [RY09] proved a lower bound of exp(nΩ( 1
d

))
for depth-d multilinear formulas. As in the general case, the depth reduction techniques of
[VSBR83, AV08, Koi10, Tav13] also work for multilinear formulas. Thus, proving a lower bound
of the form exp(n1/2+ε) for ΣΠΣΠ multilinear formulas, would imply a super-polynomial lower
bound for multilinear circuits. Currently, the best lower bound for syntactic multilinear circuits
is n4/3 by Raz, Shpilka and Yehudayoff [RSY08].

Kayal, Saha and Saptharishi [KSS14] proved a quasi-polynomial lower bound for regular
formulas that have the additional condition that the syntactic degree of the formula is at most
twice the degree of the output polynomial.
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1.6 Organization

In Section 2 we provide basic definitions and notations, and also prove some general lemmas
which will be helpful in the next sections. In Section 3, we explain how to reduce general
depth-3 and depth-4 formulas to formulas such that every polynomial at the bottom has small
support. Then, in Section 4, we construct a hitting set for those types of formulas. In Section 5,
we explain how to combine the ideas of the previous two sections and construct our hitting set
for depth-3 and depth-4 multilinear formulas.

We then move on in Section 6 to depth-d regular formulas, and show how to reduce them
to depth-4 formulas and obtain a hitting set for this class. In the short Section 7 we spell out
briefly how, using known observations about the relation between PIT and lower bounds, we
obtain our lower bounds for multilinear formulas. Finally, in Section 8 we discuss some open
problems and future directions for research.

2 Preliminaries

In this section, we establish notation, some definitions and useful lemmas that will be used
throughout the paper.

2.1 Notations and Basic Definitions

For any positive integer n, we denote by [n] the set of integers from 1 to n, and by
([n]
≤r
)

the
family of subsets A ⊆ [n] such that |A| ≤ r. We often associate a subset A ⊆ [n] with a subset
of variables var(A) ⊆ {x1, . . . , xn} in a natural way (i.e., var(A) = {xi | i ∈ A}). In those cases
we make no distinction between the two and use A to refer to var(A). Additionally, if A and
B are disjoint subsets of [n], we denote their disjoint union by A tB. For a vector v ∈ Fn we
denote with v|A the restriction of v to the coordinates A.

In order to improve the readability of the text, we omit floor and ceiling notations.

Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a polynomial. We will denote by ∂xf the formal
derivative of f with respect to the variable x, and by f |x=0 the polynomial obtained from f
by setting x = 0. Moreover, if A ⊆ [n], we will denote by ∂Af the polynomial obtained when
taking the formal derivative of f with respect to all variables in A. In a similar fashion, we
denote by f |A=0 the polynomial obtained when we set all the variables in A to zero, and more
generally, if |A| = r and α = (α1, . . . , αr) ∈ Fr, f |A=α will denote the restriction of f obtained
when setting the i’th variable in A to αi, for 1 ≤ i ≤ r.

In addition to the conventions above, the following definitions will be very useful in the
next sections.

Definition 2.1 (Variable Set and Non-trivial Variable Set). Let f(x1, . . . , xn) ∈ F[x1, . . . , xn]
be a polynomial. Define the variable set (var) and the non-trivial variable set (var∗) as follows:

var(f) = {x ∈ {x1, . . . , xn} | ∂xf 6= 0}
var∗(f) = {x ∈ {x1, . . . , xn} | ∂xf 6= 0 and f |x=0 6= 0}.
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That is, the variable set of a polynomial f is the set of variables x ∈ {x1, . . . , xn} that appear
in the representation of f as a sum of monomials, whereas the non-trivial variable set is the
set of variables of f that do not divide it.

We shall say that f has a small support if var(f) (or var∗(f)) is not too large.

Definition 2.2 (Monomial Support and Sparsity of a polynomial). Let f(x1, . . . , xn) ∈
F[x1, . . . , xn] be a polynomial. We define the monomial support of f , written mon(f), as
the set of monomials that have a non-zero coefficient in f . In addition, we define the sparsity
of f , written ‖f‖, as the size of the set mon(f), that is,

‖f‖ = |mon(f)|.

In other words, the sparsity of f is the number of monomials that appear with a non-zero
coefficient in f .

In the constructions of our hitting sets we will need to combine assignments to different
subsets of variables. The following notation will be useful. For a partition of [n], T1 t T2 t
· · · t Tm = [n], and sets Hi ⊆ F|Ti|, we denote with HT11 × · · · × HTmm the set of all vectors of
length n whose restriction to Ti is an element of Hi:

HT11 × · · · × H
Tm
m = {v ∈ Fn | ∀i ∈ [m], v|Ti ∈ Hi}.

2.2 Depth-3 and Depth-4 Formulas

We define some special classes of depth-3 and depth-4 formulas that will be used throughout
this paper.

Definition 2.3 (Restricted Top Fan-in). Let Φ be a multilinear depth-4 formula. We say that
Φ is a multilinear Σ[M ]ΠΣΠ formula if it is of the form

∑m
i=1

∏ti
j=1 fi,j, where m ≤ M . If,

in addition to the conditions above, we have that each fi,j is a linear function, that is, Φ is
actually a depth-3 formula, we will say that Φ is a multilinear Σ[M ]ΠΣ formula.

Our next definition considers the case where polynomials computed at the bottom layers
do not contain too many variables, that is, they have small support.

Definition 2.4 (Restricted Top Fan-in and Variable Set). Let Φ be a multilinear depth-4 for-
mula. We say that Φ is a multilinear Σ[M ]Π(ΣΠ){τ} formula if it is of the form

∑m
i=1

∏ti
j=1 fi,j,

where m ≤M and for each 1 ≤ i ≤ m we have that

(i) |var(fi,j)| ≤ τ for all 1 ≤ j ≤ ti

(ii) var(fi,j1) ∩ var(fi,j2) = ∅, for any j1 6= j2.

If, in addition to the conditions above, we have that each fi,j is a linear function, that is, Φ is
actually a depth-3 formula, we will say that Φ is a multilinear Σ[M ]ΠΣ{τ} formula.

12



Since the formula will be given to us as a black-box, we can make some assumptions about
it, which will help us to preserve non-zeroness when taking derivatives or setting variables to
zero. To this end, we define a notion of simplicity of depth-4 formulas,4 and prove that we can
assume without loss of generality that any input formula is simple.

Definition 2.5. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial and let

Φ =
M∑
i=1

ti∏
j=1

fi,j

be a multilinear depth-4 formula computing f . We say that Φ is a simple multilinear depth-
4 formula if for each variable x ∈ var(f) that divides f , it must be the case that for every
1 ≤ i ≤M , there exists j ∈ [ti] such that fi,j = x.

In words, Φ is simple if whenever a variable x divides f , it also divides every product gate.
The following proposition tells us that we can indeed assume, without loss of generality, that
any multilinear depth-4 formula given to us is a simple formula.

Proposition 2.6. If Φ is a depth-4 multilinear Σ[M ]ΠΣΠ formula computing f(x1, . . . , xn),
then f can be computed by a simple depth-4 multilinear Σ[M ]ΠΣΠ formula Ψ where |Ψ| ≤ |Φ|.

Proof. Since Φ is a Σ[M ]ΠΣΠ formula, we have that

f =

M∑
i=1

ti∏
j=1

fi,j .

Let x ∈ var(f) be such that x | f . Notice that we can write each fi,j in the following form:

fi,j = x · gi,j + hi,j , where x 6∈ var(gi,j) ∪ var(hi,j).

Moreover, observe that if x 6∈ var(fi,j), then we must have that fi,j = hi,j . Since the formula
is multilinear, for each i ∈ [M ] there exists at most one j such that x ∈ var(fi,j). If such j
exists, we might as well assume without the loss of generality that j = 1.

Let A = {i : 1 ≤ i ≤ M, and x ∈ var(fi,1)} and B = [M ] \ A. Now, rewriting the formula
above for f , we get:

f =
M∑
i=1

ti∏
j=1

fi,j =
∑
i∈A

fi,1 ·
ti∏
j=2

fi,j +
∑
i∈B

ti∏
j=1

fi,j

=
∑
i∈A

(xgi,1 + hi,1) ·
ti∏
j=2

hi,j +
∑
i∈B

ti∏
j=1

hi,j

=
∑
i∈A

xgi,1 ·
ti∏
j=2

hi,j +
∑
i∈A

hi,1 ·
ti∏
j=2

hi,j +
∑
i∈B

ti∏
j=1

hi,j .

4Note that this is not the same notion as used, e.g., in [DS06].
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Since x | f , it follows that f = xg. Hence, we must have that (in the above equation)∑
i∈A

hi,1 ·
ti∏
j=2

hi,j +
∑
i∈B

ti∏
j=1

hi,j = 0

and therefore

f =
∑
i∈A

xgi,1 ·
ti∏
j=2

hi,j .

Since |A| ≤ M and ‖gi,1‖ ≤ ‖fi,1‖, ‖hi,j‖ ≤ ‖fi,j‖ for every i ∈ [M ] and 2 ≤ j ≤ ki, the
formula

Φ′ =
∑
i∈A

x · gi,1 ·
ti∏
j=2

hi,j =
∑
i∈A

ti∏
j=2

x · gi,1 · hi,j

is a multilinear Σ[M ]ΠΣΠ formula computing f , of size |Φ′| ≤ |Φ| and such that x appears as
a polynomial at each product gate.

By repeating this process for each variable var(f) \ var∗(f), we get our Σ[M ]ΠΣΠ formula
Ψ. Since at each step we preserve the invariant that the size of the formula does not increase,
we must have that |Ψ| ≤ |Φ|.

As a corollary, together with the simple observation that any derivative or restriction of a
multilinear formula results in a multilinear formula of at most the same size, we obtain that
partial derivatives or restrictions of a multilinear polynomial can also be computed by simple
formulas.

Corollary 2.7. If Φ is a depth-4 multilinear Σ[M ]ΠΣΠ formula computing f(x1, . . . , xn), then
for any two disjoint sets A,B ⊆ var(f), ∂Af |B=0 can be computed by a simple depth-4 multi-
linear Σ[M ]ΠΣΠ formula Ψ where |Ψ| ≤ |Φ|. We will refer to Ψ as ∂AΦ|B=0.

Therefore, from now on we will always assume that any depth-4 multilinear formula given
to us is a simple formula.

2.3 ROABPs for Products of Sparse Polynomials

Another important model that we need for our constructions is that of Algebraic Branching
Programs.

Definition 2.8 ([Nis91]). An Algebraic Branching Program (ABP) is a directed acyclic graph
with one vertex s of in-degree zero (the source) and one vertex t of out-degree zero (the sink).
The vertices of the graph are partitioned into levels labeled 0, 1, . . . , D. Edges in the graph can
only go from level ` − 1 to level `, for ` ∈ [D]. The source is the only vertex at level 0 and
the sink is the only vertex at level D. Each edge is labeled with an affine function in the input
variables. The width of an ABP is the maximum number of nodes in any layer, and the size
of an ABP is the number of vertices in the ABP.

Each path from s to t computes the polynomial which is the product of the labels of the path
edges, and the ABP computes the sum, over all s→ t paths, of such polynomials.
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Definition 2.9 (Ordered Read-Once Algebraic Branching Programs). An Ordered Read-Once
Algebraic Branching Program (ROABP) in the variable set {x1, . . . , xD} is an ABP of depth
D, such that each edge between layer `− 1 and ` is labeled by a univariate polynomial in x`.

In this section we show an elementary construction of ROABPs for a very specific class of
polynomials. This construction however will be useful in the upcoming sections.

Lemma 2.10. Let F be a field, and f(y1, . . . , ym) =
∑M

i=1

∏ti
j=1 fi,j be a multivariate polyno-

mial over F, such that for every 1 ≤ i ≤M :

1. At most k different 1 ≤ j ≤ ti, satisfy |var(fi,j)| > 1.

2. For every 1 ≤ j ≤ ti, ‖fi,j‖ ≤ s.

Then f can be computed by an ROABP of width at most M · sk.

Proof. Assume without the loss of generality that for every i there is ki ≤ k such that
fi,1, . . . , fi,ki are those polynomials that contain more than a single variable. Note that the

sparsity of every product gi
def
=
∏ki
j=1 fi,j is at most sk. We construct an ROABP of width sk

for each gi. The final ROABP is constructed by connecting the ROABPs for all M products
in parallel.

Fix 1 ≤ i ≤ M . Expanding the product gi =
∏ki
j=1 fi,j we get at most sk monomials.

Now, multiply each such monomial with the remaining functions in the i’th gate,
∏ti
j=ki+1 fi,j .

Notice that the multiplicands in each such term can be reordered so that first x1 appears then
x2 etc. Thus, we can construct a ROABP of width sk for computing each such product of a
monomial with

∏ti
j=ki+1 fi,j . Then, connecting all those ROABPs in parallel we get a ROABP

of width sk for the i’th multiplication gate. Connecting in a similar fashion all ROABPs for
the different multiplication gates we get a ROABP of width (at most) M · sk computing f .

Remark 2.11. Since we only need to construct ROABPs of the above kind, which are in fact
set multilinear formulas, we do not really need the full power of the ROABP model. In fact,
we could have used any hitting set for the model of depth 3 set-multilinear formulas, and our
results would remain true (albeit with no significant improvement in the parameters).

2.4 Hashing

In this section we present the basic hashing tools that we will use in our construction. We first
recall the notion of a k-wise independent hash family.

Definition 2.12. A family of hash functions F = {h : [n] → [m]} is k-wise independent if
for any k distinct elements (a1, . . . , ak) ∈ [n]k and any k (not necessarily distinct) elements
(b1, . . . , bk) ∈ [m]k, we have:

Pr
h∈F

[h(a1) = b1 ∧ · · · ∧ h(ak) = bk] = m−k.
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Our next lemma studies the case where several sets are hashed simultaneously by the same
hash function. We present the proof in a general form and only later, in the application, fix
the parameters.

Lemma 2.13. Let 0 < δ < ε, and n,M ∈ N such that M = 2n
δ
. Assume A1, . . . ,AM are

families of pairwise disjoint subsets of [n] such that for every 1 ≤ i ≤ M and every A ∈ Ai,
|A| ≤ n1−ε. Let γ > 0 be such that γ ≥ (ε − δ)/2. Let F be a family of k-wise independent
hash functions from [n] to [m] for k = nδ + 2 log n and m = 10n1−ε+γ.

Then there exists h ∈ F such that for every 1 ≤ i ≤ M and every 1 ≤ j ≤ m, both of the
following conditions hold:

1. For every set A ∈ Ai,
∣∣h−1(j) ∩A

∣∣ ≤ k.

2. The number of sets A ∈ Ai such that
∣∣h−1(j) ∩A

∣∣ > 1 is at most k log n.

Proof. We show that for a random h ∈ F , both items happen with probability at least 2/3.

Fix 1 ≤ i ≤M , 1 ≤ j ≤ m and A ∈ Ai. By k-wise independence and the assumption that
|A| ≤ n1−ε, we have that

Pr
[∣∣h−1(j) ∩A

∣∣ ≥ k] ≤ ∑
B⊆A,|B|=k

Pr[∀b ∈ B, h(b) = j]

≤
(
n1−ε

k

)
· 1

(10n1−ε+γ)k

≤ n(1−ε)k · 1(
n(1−ε)k+γk

) · 1

10k

≤ n−γk · 10−k. (1)

Taking a union bound over all 1 ≤ i ≤ M and 1 ≤ j ≤ m, and using the estimate (1) and
the fact that m ≤ n, we get that the first item in the statement of the lemma does not happen
with probability at most

M ·m · n−γk · 10−k ≤ 1

3

for large enough n, by the choice of k.

Turning to the second item in the statement of the lemma, it is convenient to partition
every family of subsets A into (1− ε) log n disjoint buckets, according to the size of the sets in
A. Fix such A, and, for 1 ≤ i ≤ (1− ε) log n, define the bucket

Bi =

{
A ∈ A :

n1−ε

2i
≤ |A| ≤ n1−ε

2i−1

}
.

We show that with high probability over the choice of h, and for every j ∈ [m], in every bucket
there are at most k sets whose intersection with h−1(j) has size larger than 1.
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For every set A ∈ A, by k-wise independence (in particular, pairwise independence) the
probability that |A ∩ h−1(j)| ≥ 2 is at most(

|A|
2

)
· 1

(10n1−ε+γ)2 ≤ |A|
2 · 1

100n2−2ε+2γ
.

Fix a bucket Bi. By definition, for every A ∈ Bi it holds that |A| ≤ n1−ε

2i−1 , and so for every
set A ∈ Bi, the probability that |A ∩ h−1(j)| ≥ 2 is at most

n2−2ε

22i−2
· 1

100
· n2ε−2−2γ =

1

100
· n−2γ · 22−2i. (2)

Since A is a partition, by pairwise disjointness, the number of sets in Bi is at most nε · 2i.
Hence, by k-wise independence and (2), the probability there exist k/2 sets in the bucket Bi,
with intersection sizes at least 2, is at most

(
nε · 2i

k/2

)
·
(

1

100
· n−2γ · 22−2i

)k/2
≤(

enε · 2i

k/2

)k/2(
1

100
· n−2γ · 22−2i

)k/2
=(

e · 23−i

100

)k/2
·
(
nε−2γ

k

)k/2
, (3)

where we have used the inequality
(
a
b

)
≤
(
ea
b

)b
. Observe that nε−2γ ≤ k, by the choice of γ.

Taking a union bound over all log n buckets, and then over all M partitions and all m
possible values of j, and using the estimation (3), we get that the probability that there more
than k/2 sets that intersect h−1(j) in more than one element, for some j, is at most

M ·m · log n ·
(
e · 23−i

100

)k/2
·
(
nε−2γ

k

)k/2
≤ 1

3
,

for large enough n, by the choices of k and γ. Hence, the second item in the statement of the
lemma follows as well.

We conclude this section with the following well known fact (see, e.g., Chapter 16 in [AS08],
and the references therein):

Fact 2.14. There exists an explicitly constructible family F of k-wise independent hash func-
tions from [n] to [10n1−ε+γ ] of size |F| = nO(k).

3 Reducing Bottom Support of Depth-3 and Depth-4 Formulas

In this section we make the first step towards proving Theorem 1.1 and Theorem 1.3. As
outlined in Section 1.4, our first step is making the functions computed at the bottom layers
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(linear functions in the case of depth-3 and “sparse” polynomials in the case of depth-4)
have small (variable) support. Hence, we establish reductions from any Σ[M ]ΠΣ or Σ[M ]ΠΣΠ
formula to a Σ[M ]ΠΣ{τ} or Σ[M ]Π(ΣΠ){τ} formula, respectively. We first describe the simple
depth-3 case. We continue by elaborating on the more general case of depth-4 formulas, which
is slightly more involved. Both proofs follow the outline described in Section 1.4.

3.1 Reducing Bottom Support for Depth-3

Given a depth 3 formula
∑M

i=1

∏ti
j=1 `i,j , we would like to eliminate all linear functions that

contain many variables. To this end, we observe that there must exist a variable that appears
in many of these functions, and that taking a derivative according to that variable eliminates
those functions from the formula.

Lemma 3.1. Let f(x1, . . . , xn) =
∑M

i=1

∏ti
j=1 `i,j be a non-zero, multilinear polynomial com-

puted by a multilinear Σ[M ]ΠΣ formula Φ and let ε > 0. Then, there exists a set of variables
A of size |A| ≤ Õ(nε · logM) such that ∂Af is a non-zero multilinear polynomial that can be
computed by a multilinear Σ[M ]ΠΣ{n

1−ε} formula.

Proof. Define
B = {`i,j | |var(`i,j) ∩ var(f)| ≥ n1−ε}

to be the set of “bad” linear functions. Those are linear functions that contain more than n1−ε

variables that also appear in f . We show how to eliminate those linear functions from the
formula while preserving non-zeroness.

Since for every ` ∈ B, |var(`) ∩ var(f)| ≥ n1−ε, there exists a variable xi that appears in at
least |B|n1−ε/n = |B|/nε linear functions in B (and also in f). Consider the polynomial ∂xif .
Since xi ∈ var(f), this is a non-zero polynomial. Furthermore, using the fact that deriving with
respect to a variable is a linear operation, and the fact that every multiplication gate in the
formula multiplies linear functions with disjoint support, a formula for ∂xif can be obtained
from Φ by replacing every linear function in which xi appears with an appropriate constant.
Therefore, every such function is removed from B, and so the set of bad linear functions in
∂xif is of size at most |B| − |B|/nε = |B| · (1 − 1/nε). We continue this process for at most
O(nε · log |B|) steps, until we reach a point where |B| < 1 and so |B| = 0.

Finally, it remains to be noted that in the original formula, the number |B| of bad linear
functions is at most Mn, since by multilinearity each multiplication gate multiplies linear
functions with disjoint support, and so its fan-in is at most n.

3.2 Reducing Bottom Support for Depth-4

The process for depth-4 formulas follows the same outline as the depth-3 case, but there are a
few more details. Given a parameter τ ∈ N, we want to transform any multilinear Σ[M ]ΠΣΠ
formula computing a non-zero polynomial f(x1, . . . , xn) into a Σ[M ]Π(ΣΠ){τ} formula, while
preserving non-zeroness. By Proposition 2.6, we can assume any formula that we work with is
a simple formula. We again define the “bad” polynomials as those that contain many variables
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(that also appear in f). Our progress measure for their elimination will be the total sparsity
of all bad polynomials, which we define below.

Definition 3.2. Let τ ∈ N and Φ =
∑M

i=1

∏ti
j=1 fi,j be a multilinear Σ[M ]ΠΣΠ formula comput-

ing a non-zero multilinear polynomial f(x1, . . . , xn) ∈ F[x1, . . . , xn]. Let B = {fi,j | var(fi,j) >
τ}. We say that Φ is ∆-far from a Σ[M ]Π(ΣΠ){τ} formula if∑

g∈B
‖g‖ = ∆.

A polynomial f(x1, . . . , xn) is ∆-far from a Σ[M ]Π(ΣΠ){τ} formula if it can be computed by a
formula that is ∆-far from such a formula.

Observation 3.3. Notice that a formula Φ is 0-far from being Σ[M ]Π(ΣΠ){τ} iff Φ itself is a
Σ[M ]Π(ΣΠ){τ} formula.

Now that we have a measure of how far a given Σ[M ]ΠΣΠ formula (computing a non-zero
polynomial) is from the class of Σ[M ]Π(ΣΠ){τ} formulas, we can show the existence of a small
set of variables such that when we either take derivatives or set these variables to zero, we
obtain a Σ[M ]Π(ΣΠ){τ} formula computing another non-zero polynomial. Since we are working
with simple formulas, if a variable x appears in a bad polynomial fi,j ∈ B, then it must be the
case that x ∈ var∗(f), and therefore we are free to either take a partial derivative with respect
to x or to set x to zero, while preserving non-zeroness of the input polynomial f(x1, . . . , xn).
Therefore, the non-zeroness condition is taken care of by simplicity.

We begin by showing that we can always make good progress in this measure. More
precisely, we have the following lemma:

Lemma 3.4. Let Φ =
∑M

i=1

∏ti
j=1 fi,j be a multilinear Σ[M ]ΠΣΠ formula computing a non-zero

multilinear polynomial f(x1, . . . , xn)
∈ F[x1, . . . , xn]. If Φ is ∆-far from a Σ[M ]Π(ΣΠ){τ} formula, then there exists x ∈ var∗(f)
such that one of the polynomials ∂xf or f |x=0 is non-zero and is at most ∆(1 − τ

2n)-far from

a Σ[M ]Π(ΣΠ){τ} formula.

Proof. By Proposition 2.6, we can assume without loss of generality that Φ is simple. We note
that making Φ simple can only reduce ∆.

Let B = {fi,j | |var(fi,j)| > τ}. Notice that by simplicity of Φ, we have that |var(fi,j)| >
1⇒ var(fi,j) ⊆ var∗(f). Since Φ is ∆-far from a Σ[M ]Π(ΣΠ){τ} formula, we have that

∆ =
∑
g∈B
‖g‖.

For each x ∈ var∗(f), let Fx = {g ∈ B | x ∈ var(g)}. Notice that

∑
x∈var∗(f)

∑
g∈Fx

‖g‖

 =
∑
g∈B
|var(g)| · ‖g‖ > τ ·

∑
g∈B
‖g‖ = τ∆.
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This implies that there exists x ∈ var∗(f) for which

∑
g∈Fx

‖g‖ ≥ ∆ · τ
|var∗(f)|

≥ ∆ · τ
n

. (4)

Since ‖g‖ = ‖g|x=0‖+ ‖∂xg‖ for any multilinear polynomial g, we have that∑
g∈Fx

‖g‖ =
∑
g∈Fx

‖g|x=0‖+
∑
g∈Fx

‖∂xg‖.

Hence, by equation (4), one of
∑
g∈Fx

‖g|x=0‖ or
∑
g∈Fx

‖∂xg‖ must be larger than ∆·τ
2n . If

∑
g∈Fx

‖g|x=0‖ >
∆τ

2n
,

by taking the derivative of f with respect to x, we have that ∂xf 6= 0 (since x ∈ var∗(f)) and
that the distance of ∂xΦ to a Σ[M ]Π(ΣΠ){τ} formula is upper bounded by∑

g∈B\Fx

‖g‖+
∑
g∈Fx

‖∂xg‖ =
∑
g∈B
‖g‖ −

∑
g∈Fx

‖g|x=0‖

< ∆− ∆τ

2n
= ∆

(
1− τ

2n

)
.

Indeed, notice that in ∂xΦ the support of any other polynomial fi,j cannot increase (so that
the subset of polynomials with large support in ∂xΦ is a subset of B).

Analogously, if
∑

C∈Fx ‖∂xC‖ >
∆τ
2n , then we take f |x=0. The upper bounds are the same

as those obtained for the first case. This finishes the proof of the lemma.

By repeatedly applying Lemma 3.4, we obtain the following corollary, which guarantees
the existence of a small set of variables that allow us to transform our Σ[M ]ΠΣΠ formula into
a Σ[M ]Π(ΣΠ){τ} one.

Corollary 3.5 (Reduction to Depth-4 with Small Bottom Support). Let Φ be a multilin-
ear simple Σ[M ]ΠΣΠ formula computing a non-zero multilinear polynomial f(x1, . . . , xn) ∈
F[x1, . . . , xn]. There exist disjoint sets A,B ⊂ [n] with |A t B| ≤ 2n

τ · log(|Φ|) such that the

polynomial ∂Af |B=0 is non-zero and can be computed by a simple multilinear Σ[M ]Π(ΣΠ){τ}

formula Φ.

Proof. Let ∆ be such that Φ is ∆-far from being Σ[M ]Π(ΣΠ){τ}. Notice that ∆ ≤ |Φ|.
We show by induction that there exist disjoint sets Ak and Bk such that |AktBk| ≤ k, and

the polynomial ∂Akf |Bk=0 is non-zero and at most ∆(1− τ
2n)k-far from being Σ[M ]Π(ΣΠ){τ}.

For k ≥ 0, define Ak, Bk ⊆ [n], fk(x1, . . . , xn) = ∂Akf |Bk=0 and let ∆k be an upper bound
on how far fk(x1, . . . , xn) is from being Σ[M ]Π(ΣΠ){τ}. Initially, set A0 = B0 = ∅. In this case,
we have that f0(x1, . . . , xn) = f(x1, . . . , xn) and ∆0 = ∆ = ∆(1− τ

2n)0. This is the base case
for our induction.
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Suppose our hypothesis is true for some k ≥ 0. If ∆(1− τ
2n)k < 1, then we know that our

formula is already Σ[M ]Π(ΣΠ){τ} and therefore we are done. Else, by applying Lemma 3.4, we
have that there is a variable x ∈ var∗(fk) such that either ∂xfk or fk|x=0 is (at most) ∆k(1− τ

2n)-

far from being Σ[M ]Π(ΣΠ){τ}. Thus, ∆k(1 − τ
2n) ≤ ∆(1 − τ

2n)k · (1 − τ
2n) = ∆(1 − τ

2n)k+1

and x ∈ var∗(fk) ⊆ [n] \ (Ak t Bk). Therefore, if ∂xfk is the close polynomial then we set
Ak+1 = Ak ∪ {x}, Bk+1 = Bk. Otherwise, we set Ak+1 = Ak, Bk+1 = Bk ∪ {x}. It is easy to
see that the inductive properties hold in this case as well. This ends the inductive proof.

Since ∆(1 − τ
2n)k < 1 for k ≥ 2n

τ log ∆, and since 2n
τ log(|Φ|) ≥ 2n

τ log ∆, it is enough to
choose at most 2n

τ log(|Φ|) variables. This proves this corollary.

4 Hitting Set for ΣΠΣ{n
1−ε} and ΣΠ(ΣΠ){n

1−ε} Formulas

In this section we construct subexponential sized hitting set for the classes of Σ[M ]ΠΣ{n
1−ε}

and Σ[M ]Π(ΣΠ){n
1−ε} multilinear formulas. Recall that in Section 3 we showed how to reduce

general depth-3 and depth-4 formulas to these types of formulas. In the next section, we will
show how to tie all loose ends and combine the arguments of Section 3 with those of this section
in order to handle the general case.

An essential ingredient in our construction is a quasi-polynomial sized hitting set for Read-
Once Algebraic Branching Programs (ROABPs) [FS13, AGKS15]. We note that in our setting,
we may assume that the reading order of the variables by the ABP is known.

Theorem 4.1 ([FS13, AGKS15]). Let C be the class of n-variate polynomials computed by a
ROABP of width w, such that the degree of each variable is at most d, over a field F so that
|F| ≥ poly(n,w, d). Then C has a hitting set of size poly(n,w, d)logn that can be constructed in
time poly(n,w, d)logn.

We begin by describing a unified construction for both Σ[M ]ΠΣ{n
1−ε} and Σ[M ]Π(ΣΠ){n

1−ε}

formulas. We then describe how to set the parameters of the construction for each of the cases.

Construction 4.2 (Hitting set for multilinear Σ[M ]ΠΣ{n
1−ε} and Σ[M ]Π(ΣΠ){n

1−ε} formulas).

Let 0 < δ < ε and n, k, s,M integers, such that M = 2n
δ

and k = nδ + 2 log n. Set m =
10n1−(ε+δ)/2 and t = k log n. Let F be a family of k-wise independent hash functions from [n]
to [m], as in Lemma 2.13. For every h ∈ F , define the set Ih as follows:

1. Partition the variables to sets5 T1 t T2 t · · · t Tm = h−1(1) t h−1(2) t · · · t h−1(m).

2. For every 1 ≤ i ≤ m, let Hi be a hitting set for ROABPs of width M · st and individual
degree d = 1 (as promised by Theorem 4.1), on the variables of Ti (of course, |Ti| ≤ n).

3. We define Ih as the set of all vectors v such that the restriction of v to the coordinates
Ti, v|Ti, is in Hi. I.e., in the notation of Section 2.1,

Ih = HT11 ×H
T2
2 × · · · × H

Tm
m .

5Recall that we associate subsets of [n] with subsets of the variables, and make no distinction in the notation.
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Finally, define H =
⋃
h∈F Ih.

The following lemma gives an upper bound to the size of the hitting set constructed in
Construction 4.2.

Lemma 4.3. Let δ, ε, k, n, s and M be the parameters of Construction 4.2. The set H con-

structed in Construction 4.2 has size nO(k)·
(
M · sk logn

)Õ(n1−(ε+δ)/2)
=
(
M · sk logn

)Õ(n1−(ε+δ)/2)
,

and it can be constructed in time poly(|H|).

Proof. This is a direct consequence of the construction, 2.14 and Theorem 4.1.

4.1 Depth-3 Formulas

We begin by describing the argument for depth-3 formulas. The following lemma proves
that indeed, by setting the proper parameters, the set H from Construction 4.2 does hit
Σ[M ]ΠΣ{n

1−ε} formulas.

Lemma 4.4. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a non-zero multilinear polynomial computed
by a multilinear Σ[M ]ΠΣ{n

1−ε} formula Φ =
∑M

i=1

∏ti
j=1 `i,j. Let H be the set constructed in

Construction 4.2 with s = k + 1. Then there exists a point α ∈ H such that f(α) 6= 0.

Proof. For every multiplication gate 1 ≤ i ≤M in Φ, define a partition of the variables

Ai = {var(`i,j) ∩ var(f) | 1 ≤ j ≤ ti}.

Let h ∈ F be the function guaranteed by Lemma 2.13 with respect to the partitions A1, . . .AM ,
and assume the setup of Construction 4.2. We claim that there exists α ∈ Ih such that f(α) 6= 0.

To that end, consider the partition of the variables induced by h:

T1 t T2 t · · · t Tm = h−1(1) t h−1(2) t · · · t h−1(m).

We view the polynomial as a polynomial f1 in the variables of T1, over the extension field
F(T2t· · ·tTn). We claim that f1 can be computed by an ROABP of width M ·(k + 1)k logn. To
see this note that, by Lemma 2.13, in any multiplication gate, at most k log n linear functions
contain more than one variable from T1, and each contains at most k variables. It follows
that the sparsity of every linear function (with respect to the variables in T1) among those
k log n functions, is at most k + 1. By Lemma 2.10, f1 can be computed by an ROABP over
F(T2 t · · · t Tn) of width M · (k + 1)k logn. By the hitting set property of Theorem 4.1, there

exists α1 ∈ H1 ⊆ F|T1| such that f2
def
=f1|T1=α1 6≡ 0.

Similarly, the same conditions now hold for f2, considered as a polynomial over the field

F(T3 t · · · t Tn), and so there exists α2 ∈ H2 ⊆ F|T2| such that f3
def
=f2|T2=α2 6≡ 0.

We continue this process for m steps, and at the last step we find αm such that fm−1(αm) =
f(α1, · · · , αm) 6= 0, with (α1, · · · , αm) ∈ Fn being the length n vector obtained by filling the
entires of αi ∈ F|Ti| in the positions indexed by Ti.
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4.2 Depth-4 Formulas

The argument for depth-4 formulas is very similar, apart from a small change in the setting of
the parameters.

Lemma 4.5. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a non-zero multilinear polynomial computed
by a multilinear Σ[M ]Π(ΣΠ){n

1−ε} formula Φ =
∑M

i=1

∏ti
j=1 fi,j. Let H be the set constructed

in Construction 4.2 with s = 2k. Then, there exists a point α ∈ H such that f(α) 6= 0.

Proof. The proof is almost identical to that of Lemma 4.4. In this case, for every 1 ≤ i ≤ M
we define the partition

Ai = {var(fi,j) | 1 ≤ j ≤ ti}.

Note that the assumptions of Lemma 2.13 still hold, and so we denote by h ∈ F the function
guaranteed by Lemma 2.13 with respect to the partitions A1, . . .AM , and again claim that
there exists α ∈ Ih such that f(α) 6= 0.

Consider once more the partition on the variables induced by h,

T1 t T2 t · · · t Tm = h−1(1) t h−1(2) t · · · t h−1(m),

and view the polynomial as a polynomial f1 in the variables of T1, over the field F(T2t· · ·tTn).

We now claim that f1 can be computed by an ROABP of width M ·
(
2k
)k logn

= 2k
2 logn.

The proof for this claim is exactly as in the depth-3 case, except that now the best bound we
can give on the sparsity of each polynomial which intersects T1 in more than one variable is
2k, as it is a multilinear polynomials in at most k variables.

Similarly, we move on to handle T2, . . . , Tm and obtain a point α such that f(α) 6= 0.

5 Hitting Set for Depth-3 and Depth-4 Multilinear Formulas

Recall that, in Section 3, we showed that any non-zero Σ[M ]ΠΣ or Σ[M ]ΠΣΠ formula has
a non-zero partial derivative (and, possibly, a restriction) which is computed by a non-zero
Σ[M ]ΠΣ{n

1−ε} or Σ[M ]Π(ΣΠ){n
1−ε} formula, respectively. Then, in Section 4 we gave hitting

sets for such formulas. In this section we provide the final ingredient, which is to show how to
“lift” those hitting sets back to the general class, via a simple method, albeit one that requires
some notation.

Handling restrictions is fairly easy, and causes no blow up in the hitting set size: If we have
a set H ⊆ Fn−r that hits f |B=0 for some multilinear polynomial f(x1, . . . , xn) and B ⊆ [n]
with |B| = r, then simply extending H into a subset of Fn by filling out zeros in all the entries
indexed by B will hit f itself.

In order to handle partial derivates, first note that if f(x1, . . . , xn) is a multilinear polyno-
mial, then

∂xif = f(x1, . . . , xi−1, 1, xi+1, . . . , xn)

− f(x1, . . . , xi−1, 0, xi+1, . . . , xn),
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and so if ∂xif(α) 6= 0 for some α ∈ Fn then at least one of the two evaluations on the right
hand side must be non-zero as well.

Applying this fact repeatedly, given a set A ⊆ [n] we can evaluate ∂Af at any point by
making 2|A| evaluations of f . Motivated by this, we introduce the following notation:

Definition 5.1. Let f(x1, . . . , xn) ∈ F[x1, . . . , xn] be a multilinear polynomial and A,B ⊆ [n]
be two disjoint subsets of variables with |A| = r, |B| = r′. Let H ⊆ Fn−(r+r′).

We define the “lift” of H with respect to (A,B) to be

LBA(H) =
(
{0, 1}r

)A
×
(
{0}r′

)B
×H[n]\(AtB).

In the special case where B = ∅, we simply denote LBA(H) = LA(H).

That is, for all α ∈ H, LBA(H) contains all the possible 2r ways to extend α into β ∈ Fn
by filling out zeros and ones within the r entries that are indexed by A, and zeros in all the r′

entries indexed by B.

5.1 Depth-3 Formulas

In this section we prove Theorem 1.1. For the reader’s convenience, we first restate the theorem:

Theorem 5.2 (Theorem 1.1, restated). Let C be the class of multilinear Σ[M ]ΠΣ formulas for

M = 2n
δ
. There exists a hitting set H of size |H| = 2Õ(n2/3+2δ/3) for C, that can be constructed

in time poly(|H|).

The size of the hitting set is subexponential for any constant δ < 1/2. Also, if M = poly(n)

then the size of the hitting set is 2Õ(n2/3).

With Definition 5.1 in hand, we now provide our construction for Σ[M ]ΠΣ formulas, towards
the proof of Theorem 5.2.

Construction 5.3 (Hitting set for multilinear Σ[M ]ΠΣ formulas). Let M = 2n
δ

and ε =
2/3 − δ/3. Let r = Õ(nε logM) = Õ(n2/3+2δ/3) be an upper bound on the size of the set

guaranteed to exist by Lemma 3.1. For every A ∈
([n]
≤r
)
, construct a set HA ∈ Fn−|A| using

Construction 4.2 with parameters δ, ε, n, k, s = k + 1 and M (recall that in Construction 4.2
we set k = nδ + 2 log n). Finally, let

H =
⋃

A∈([n]
≤r)

LA(HA).

We are now ready to prove Theorem 5.2:

Proof of Theorem 5.2. We show that the set H constructed in Construction 5.3 has the desired
properties. First, note that by Lemma 4.3, for every A ⊆ [n] with

|A| ≤ Õ(nε logM) = Õ(n2/3−δ/3 logM) = Õ(n2/3+2δ/3),
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the set HA has size

(M · (k + 1)k logn)Õ(n2/3−δ/3) = 2Õ(n2/3+2δ/3),

where we have used the fact that, in Construction 5.3, we take k = nδ + 2 log n. It therefore
follows that

|LA(HA)| ≤ 2|A| · |HA| = 2Õ(n2/3+2δ/3),

and that

|H| ≤
Õ(n2/3+2δ/3)∑

i=0

∑
A⊆[n],|A|=i

|LA(HA)| = 2Õ(n2/3+2δ/3).

To show the hitting property of H, let f(x1, . . . , xn) be a non-zero multilinear polynomial
computed by a Σ[M ]ΠΣ formula, and let A′ ⊆ [n] be the set guaranteed by Lemma 3.1. Thus,
|A′| ≤ Õ(nε logM) = Õ(n2/3+2δ/3). Then by Lemma 4.4, there exists α ∈ HA′ such that
∂A′f(α) 6= 0, and so there must exist

β ∈ LA′(HA′) ⊆ H

such that f(β) 6= 0.

5.2 Depth-4 Formulas

Moving on to depth-4, the construction and proof are both very similar, with a slight change
in the parameters. We first give a slightly more general form of Theorem 1.3 that we will later
use for regular formulas.

Theorem 5.4 (General theorem for multilinear ΣΠΣΠ formulas). Let C be the class of mul-
tilinear ΣΠΣΠ formulas of top fan-in M and size S so that (logM)3 · logS = o(n). There

exists a hitting set H of size |H| = 2Õ(n2/3·logM ·(logS)1/3) for C, that can be constructed in time
poly(|H|).

We note that Theorem 1.3 is an immediate corollary of Theorem 5.4.

Proof of Theorem 1.3. Apply Theorem 5.4 with M = S = 2n
δ

for some constant 0 < δ < 1/4
(the bound in Theorem 1.3 is meaningless for δ ≥ 1/4). It is clear that the conditions of

Theorem 5.4 are met. Thus, we obtain a hitting set of size |H| = 2Õ(n2/3·logM ·(logS)1/3) =

2Õ(n2/3+4δ/3) for the class.

For the proof of Theorem 5.4 we will use the following construction that is similar to
Construction 5.3.

Construction 5.5 (Hitting set for multilinear ΣΠΣΠ formulas). Let M and S be such that

(logM)3 · logS = o(n). Denote M = 2n
δ

(hence S = 2o(n
1−3δ)). Let ε be such that

nε = n2/3 · logM/(logS)2/3.
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Set
r = 2nε logS = 2n2/3 · logM · (logS)1/3.

For every two disjoint sets A,B ⊆ [n] with |A|, |B| ≤ r, construct a set HA,B ∈ Fn−(|A|+|B|)

using Construction 4.2 with parameters δ, ε, n, k, s = 2k and M (recall that in Construction 4.2
we set k = nδ + 2 log n). Finally, let

H =
⋃

A,B∈([n]
≤r)

A∩B=∅

LBA(HA,B).

Proof of Theorem 5.4. We show that the set H constructed in Construction 5.5 has the desired
properties. First, note that by Lemma 4.3, for every A,B ⊆ [n] with |A|, |B| ≤ 2nε logS, the
set HA,B has size(

M · 2k2 logn
)Õ(n1−(ε+δ)/2)

=
(

2k
2 logn

)Õ(n1−(ε+δ)/2)
= 2Õ(n1−ε/2+3δ/2),

for k = nδ + 2 log n. It therefore follows that

|LBA(HA,B)| ≤ 2|A| · |HA,B| = 22nε logS · 2Õ(n1−ε/2+3δ/2),

and that

|H| ≤
2nε logS∑
i,j=0

∑
A⊆[n]
|A|=i

∑
B⊆[n]
|B|=j

|LBA(HA,B)| = 2Õ(nε logS) · 2Õ(n1−ε/2+3δ/2).

By our setting of parameters

|H| ≤ 2Õ(nε logS) · 2Õ(n1−ε/2+3δ/2) = 2Õ(nε logS+n1−ε/2+3δ/2)

= 2Õ(n2/3·logM ·(logS)1/3),

where the last equality follows from our choice of ε in Construction 5.5 and the fact that
logM = nδ.

To show the hitting property of H, let f(x1, . . . , xn) be a non-zero multilinear polynomial
computed by a multilinear Σ[M ]ΠΣΠ formula of size S, and let A′, B′ ⊆ [n] be the sets guaran-
teed by Corollary 3.5 with τ = n1−ε. Thus, |A′|, |B′| ≤ 2nε logS. Then, by Lemma 4.5, there
exists α ∈ HA′,B′ such that ∂A′f |B′=0(α) 6= 0, and so there must exist

β ∈ LB′A′ (HA′,B′) ⊆ H

such that f(β) 6= 0.
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6 Multilinear Depth-d Regular Formulas

6.1 Definition and Background

[KSS14] defined regular formulas, which consist of formulas with alternating layers of sum and
product gates such that the fan-in of all the gates in any fixed layer is the same. In addition,
they require the formal (syntactic) degree of the formula must be at most twice the (total)
degree of its output polynomial. They showed that any nO(1)-sized arithmetic circuit can be
computed by a regular formula of size nO(log2 n) and proved a lower bound of nΩ(logn) on the
size of regular formulas that compute some explicit polynomial in VNP.

In this section, we consider multilinear regular formulas, which are regular formulas with the
extra condition that each gate computes a multilinear polynomial. Our syntactic requirement
is different than that of [KSS14]: we require that the formal degree of the formula, which is
the product of the fan-ins of the multiplication levels, is at most n. This restriction seems
more suitable in the context of multilinear computation, in which the (semantic) degree of the
polynomial computed is never more than n.

As was noted by [KSS14], by adding dummy gates to the computation tree, any formula
can be converted to a formula in which the fan-in of all gates in any layer is the same. This
transformation causes a blow-up to the size of the formula which is at most polynomial in the
original size; it may, however, increase the fan-in of multiplication gates in a way that would
make the formal degree larger than n. Thus, the requirement that the formal degree is at
most n is quite restrictive, and in particular, it does not allow the easy transformation from
multilinear formulas to regular multilinear formulas.

We now give the formal definition.

Definition 6.1 (Multilinear Regular Formulas). We say that a formula Φ is a mul-
tilinear (a1, p1, a2, p2, . . . , ad, pd, ad+1)-regular formula, computing a multilinear polynomial
f(x1, . . . , xn), if it is a multilinear Σ[a1]Π[p1]Σ[a2]Π[p2] . . .Σ[ad]Π[pd]Σ[ad+1]-formula, and∏

1≤i≤d pi ≤ n. Notice that the size of such a formula is (
∏

1≤i≤d+1 ai) · (
∏

1≤i≤d pi), and
the formal degree of such a formula is given by deg(Φ) =

∏
1≤i≤d pi ≤ n.

Comparing with the definition given in Section 1.1, an (a1, p1, a2, p2, . . . , ad, pd, ad+1)-
regular formula has depth 2d+ 1.

6.2 Reduction to Depth-4 Formulas

In this section, we reduce a multilinear depth-d regular formula to a depth-4 formula. We
first give a depth reduction lemma (Lemma 6.2) that tells us that we can reduce the depth
by one with a slight blow up in the fan-ins of the regular formula. We then use this lemma
to obtain a depth-4 formula. The idea is to break the regular formula into two formulas (the
top part and the bottom part), and then to apply the depth reduction lemma separately to
these two formulas. The delicate part is that we wish to obtain a depth-4 formula that has a
subexponential size hitting set, as in Theorem 5.4. For this we need the top fan-in M and the
total size S to satisfy that (logM)3 · logS = o(n). To achieve this we should carefully select
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the point in which to divide the formula. This is done in Theorem 6.3.

We start with the depth reduction lemma.

Lemma 6.2 (Depth Reduction Lemma). Let Ψ be a multilinear (a1, p1, a2, p2, 1)-regular for-
mula computing a polynomial f(x1, . . . , xn). Then, there exists a multilinear (a1a

p1
2 , p1p2, 1)-

regular formula Φ computing f(x1, . . . , xn).

Proof. Notice that a multilinear (a1, p1, a2, p2, 1)-regular formula is a Σ[a1]Π[p1]Σ[a2]Π[p2] for-
mula. Writing Ψ as

∑a1
i=1

∏p1
ji=1

∑a2
kji=1m(i, ji, kji), where each m(i, ji, kji) is a monomial that

is a product of p2 input gates, and by expanding the expression above by computing all the
products, we obtain:

a1∑
i=1

p1∏
ji=1

a2∑
kji=1

m(i, ji, kji) =

a1∑
i=1

 a2∑
ki,1=1

a2∑
ki,2=1

. . .

a2∑
ki,p1=1

p1∏
t=1

m(i, t, ki,t)

 . (5)

Since m(i, ji, kji) is a product of p2 input gates, and since the right hand side of (5)
computes a product of p1 of these terms, each monomial computed by

∏p1
t=1m(i, t, ki,t) is a

product of p1p2 input gates.

Since the sums on the right hand side of (5) are over all tuples of the form
(i, ki,1, ki,2 . . . , ki,p1) ∈ [a1]× [a2]p1 , we have that there are exactly a1 · ap12 summands. Hence,
the right hand side of (5) is the expression of a multilinear (a1a

p1
2 , p1p2, 1)-regular formula.

By repeatedly applying the depth reduction lemma above, we obtain the following theorem:

Theorem 6.3 (Depth Reduction of Regular Formulas). Let d ≥ 2 be an integer, c ∈ R a
constant such that c ≥ 3, and Ψ a multilinear (a1, p1, a2, p2, . . . , ad, pd, ad+1)-regular formula of
size S computing a multilinear polynomial f(x1, . . . , xn). Then, one of the following conditions
must happen:

(i) For M = S, there exists a Σ[M ]ΠΣΠ formula of size O(S · nn1−(1/c)d

) computing
f(x1, . . . , xn), or

(ii) There exists t ∈ [d − 1] such that there is a multilinear Σ[M ]ΠΣΠ formula Φ computing
f(x1, . . . , xn), with

M = Sn
α

and |Φ| ≤ 2Mn · nn1−(c−1)α
,

for α = 1
c−1 ·

(
1
c

)d−t
.

Proof. Recall that the size of the formula S satisfies S = (
∏

1≤i≤d+1 ai) · (
∏

1≤i≤d pi) . We have
three cases to analyze:
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Case 1 (small total degree): If
∏d
i=1 pi ≤ n1−(1/c)d , then we can simply write the polyno-

mial f(x1, . . . , xn) as a sum of monomials, which would give us a multilinear ΣΠ formula Φ of
size

|Φ| ≤
n1−(1/c)d∑

i=0

(
n

i

)
= O(nn

1−(1/c)d

),

which is clearly of the form Σ[1]ΠΣΠ ⊆ Σ[S]ΠΣΠ and of the required size for item i.

Case 2 (large p1): If p1 > n(1/c)d , then notice that the regular formula Ψ can be written in
the form

a1∑
i=1

p1∏
j=1

fi,j ,

where each fi,j is a multilinear (a2, p2, . . . , ad, pd, ad+1)-regular formula. Hence, each fi,j is a

polynomial of degree bounded by
∏d
i=2 pi ≤ n/p1 < n1−(1/c)d . Therefore, expanding each fi,j

into a sum of monomials, we obtain a formula Φ of the form Σ[a1]ΠΣΠ and of size

|Φ| ≤ a1 · p1 ·
n1−(1/c)d∑

i=0

(
n

i

)
= O(a1p1n

n1−(1/c)d

) = O(S · nn1−(1/c)d

).

This too satisfies item i.

Case 3 (high degree but small p1): In this case, we can assume that
∏d
i=1 pi > n1−(1/c)d

and that p1 ≤ n(1/c)d . It follows there exists an index t ∈ [d− 1] satisfying

pt ≤ n(1/c)d+1−t
and pt+1 > n(1/c)d+1−(t+1)

= n(1/c)d−t ,

since otherwise, using c ≥ 3, we would have that

d∏
i=1

pi ≤
d∏
i=1

n(1/c)d+1−i
= n

∑d
i=1(1/c)d+1−i

< n
1
c−1 < n1−(1/c)d ,

which contradicts the assumption on the degree.

Notice that we can express Ψ in the form

a1∑
i1=1

p1∏
j1=1

. . .

at+1∑
it+1=1

pt+1∏
jt+1=1

fi1,...,it+1,j1,...,jt+1 , (6)

where each fi1,...,it+1,j1,...,jt+1 is a multilinear (at+2, pt+2, . . . , ad, pd, ad+1)-regular formula. We
shall analyze separately each of the fi1,...,it+1,j1,...,jt+1 and the (a1, p1, . . . , at+1, pt+1, 1)-regular
formula “above” them.
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Notice that each fi1,...,it+1,j1,...,jt+1 is a polynomial of degree bounded by

d∏
i=t+2

pi < n/pt+1 < n1−(1/c)d−t .

Therefore, when expressing each fi1,...,it+1,j1,...,jt+1 as a sum of monomials, its sparsity is upper
bounded by

n1−(1/c)d−t∑
i=0

(
n

i

)
≤ 2nn

1−(1/c)d−t
. (7)

Now, if in (6) we replace each polynomial fi1,...,it+1,j1,...,jt+1 with a new variable
yi1,...,it+1,j1,...,jt+1 , then we get an (a1, p1, . . . , at+1, pt+1, 1)-regular formula in the y variables

Φ1 =

a1∑
i1=1

p1∏
j1=1

. . .

at+1∑
it+1=1

pt+1∏
jt+1=1

yi1,...,it+1,j1,...,jt+1 .

It is clear that Ψ is the composition of Φ1 with the assignment yi1,...,it+1,j1,...,jt+1 =
fi1,...,it+1,j1,...,jt+1 .

By applying the Depth Reduction (Lemma 6.2) repeatedly to Φ1, we obtain that Φ1 be-

comes a multilinear
(∏t+1

i=1 a
πi−1

i , πt+1, 1
)

-regular formula Φ2, where πk =
∏k
i=1 pi, for any

1 ≤ k ≤ d (and π0 = 1).

Composing Φ2 with the assignment yi1,...,it+1,j1,...,jt+1 = fi1,...,it+1,j1,...,jt+1 , we obtain the
following depth-4 regular formula Φ (after some proper relabelling):

Φ =

M∑
i=1

πt+1∏
j=1

fi,j , where M =

t+1∏
i=1

a
πi−1

i . (8)

Notice that, by our choice of the parameter t, we have

M =
t+1∏
i=1

a
πi−1

i ≤ Sπt = S
∏t
i=1 pi ≤ S

∏t
i=1 n

(1/c)d+1−i
< Sn

α
,

where α =
(

1
c

)d−t 1
c−1 . Since, by equation (7), each fi,j has sparsity bounded by 2nn

1−(1/c)d−t
=

2nn
1−(c−1)α

, we have that Φ is a Σ[M ]ΠΣΠ formula of size bounded by:

|Φ| ≤M · πt+1 · 2n1−(c−1)α ≤M · n · 2n1−(c−1)α.

This satisfies the conditions of item ii, and so this concludes the proof of the theorem.

6.3 PIT for Regular Formulas

In this section, we construct our hitting set for regular formulas. Since the reduction done
in Theorem 6.3 reduces a multilinear depth-d regular formula to one of two types of depth-4
formulas, our hitting set will be the union of two hitting sets, Fd and Gd, each one designed to
hit a specific type.
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Theorem 6.4 (Theorem 1.5, restated). For d ≥ 2, let Cd be the class of multilinear polyno-

mials computed by (a1, p1, a2, p2, . . . , ad, pd, ad+1)-regular formulas of size S ≤ 2n
δ

computing
a multilinear polynomial f(x1, . . . , xn), where δ = 1

5d+1 . Then, there exists a hitting set Hd of

size |Hd| = 2Õ(n1−δ/3) for Cd, that can be constructed in time poly(|Hd|).

The proof follows by combining Theorem 6.3 with the hitting set guaranteed by Theo-
rem 5.4.

Proof. Let f(x1, . . . , xn) be a polynomial computed by a formula Ψ ∈ Cd. By Theorem 6.3,
with the constant c = 5, there are two cases of the depth reduction to analyze. For each case
we will give a hitting set (using Theorem 5.4) and thus the union of the sets will be a hitting
set for Cd.

Case 1: For M = S ≤ 2n
δ
, there exists a Σ[M ]ΠΣΠ formula Φ of size |Φ| = O(S ·nn1−(1/5)d

) =

O(2n
δ · nn1−5δ

) computing f(x1, . . . , xn). By Theorem 5.4, there exists a hitting set H′ that
hits all such non-zero formulas with

|H′| = 2Õ(n2/3·logM ·(log |Φ|)1/3).

Observe that

(logM)3 · log |Φ| = n3δ · (nδ + n1−5δ · log n) = n4δ + n1−2δ log n

= Õ(n1−2δ).

Hence
|H′| = 2Õ(n2/3·logM ·(log |Φ|)1/3) = 2Õ(n2/3·n(1−2δ)/3) = 2Õ(n1−2δ/3).

Case 2: There exists t ∈ [d− 1] such that for αt = 1
4 ·
(

1
5

)d−t ≤ 1
20 , there exists a multilinear

Σ[M ]ΠΣΠ formula Φ computing f(x1, . . . , xn), where the top fan-in M = Sn
αt = 2n

δ+αt and
the size is bounded by |Φ| ≤ 2Mn · nn1−4αt . Again, by Theorem 5.4, there exists a hitting set
H′′ that hits all such non-zero formulas with

|H′′| = 2Õ(n2/3·logM ·(log |Φ|)1/3).

We now have that

(logM)3 · log |Φ| = Õ
(
n3(δ+αt) · (nδ+αt + n1−4αt)

)
= Õ

(
n4(δ+αt) + n1+3δ−αt

)
= Õ

(
n1−δ

)
,
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where the last equality holds as, by our choice of parameters, for all t ∈ [d− 1], 5δ + 4αt < 1
and 4δ < αt. This implies that

|H′′| = 2Õ(n2/3·logM ·(log |Φ|)1/3) = 2Õ(n2/3·n(1−δ)/3) = 2Õ(n1−δ/3),

as stated.

We note that we did not attempt to optimize the parameters in the theorem as, using our
current proof, the exponent is going to be of the form n1−1/ exp(d) anyway.

7 Lower Bounds for Bounded Depth Multilinear Formulas

As we noted earlier, the connection between construction of hitting sets and lower bounds
for explicit polynomials is well established. The following theorem was proved by [HS80] and
[Agr05], albeit we cite only a special case which matches our use of it:

Theorem 7.1 (A special case of [HS80, Agr05]). Suppose there is a black-box deterministic PIT
algorithm for a class C of multilinear circuits, that outputs a hitting set H of size |H| = 2n

α
< 2n

and runs in time poly(|H|), such that H hits circuits of size at most 2n
δ
. Then, there exists a

multilinear polynomial f(x1, . . . , xn) such that any circuit from the class C computing f must

be of size at least 2n
δ
, and the coefficients of f can be found in time 2O(n).

Theorem 7.1 is proved by finding a non-zero polynomial f(x1, . . . , xn) which vanishes on

the entire hitting set H of size 2n
α
, and then, by definition, f cannot have circuits of size 2n

δ
.

Finding f amounts to finding a non-zero solution to a homogenous system of linear equations
whose unknowns are the coefficients of the 2n possible multilinear monomials in x1, . . . , xn. As
long as 2n > |H| = 2n

α
, a non-zero solution is guaranteed to exist.

Our lower bounds now follow as a direct application of our hitting set constructions and
Theorem 7.1.

Proofs of Corollary 1.2, Corollary 1.4 and Corollary 1.6. In light of Theorem 7.1, we only
need to pick δ so that the hitting sets we constructed have size less than 2n. The appro-
priate choices, by Theorem 1.1, Theorem 1.3 and Theorem 1.5, respectively, can be seen to
be δ = 1/2 − O(log log n/ log n) (for depth-3), δ = 1/4 − O(log log n/ log n) (for depth-4) and

δ = 1
5bd/2c+1 = O

(
1√
5
d

)
(for depth-d regular formulas).

8 Conclusion and Open Questions

We conclude this paper with some obvious open problems. First, as noted in Section 1.3, the
lower bounds that we get from our hitting sets are not as good as the best lower bounds for
these models. Can one improve our construction to yield lower bounds matching the best
known lower bounds?
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Currently, the size of the hitting set that we get for depth-d regular multilinear formulas
is roughly exp(n1−1/ exp(d)). Can the bound be improved to exp(n1−Ω(1/d)) ? In our proof the
reason for this exponential loss is that we reduce the regular formula to a Σ[M ]ΠΣΠ formula
of size S and we need M and S to satisfy (because of Theorem 5.4) (logM)3 · logS = o(n).

In particular, if M = 2n
δ

and S = 2n
γ

then we require that 3δ + γ < 1. Notice that, in
the depth reduction theorem (Theorem 6.3), if we start with a regular formula of size 2n

δ

then, if we break the formula at layer t, we roughly get a top fan-in of M = 2n
δ·p1·p2···pt

and bottom sparsity of (roughly) exp(n1−pt+1). This gives a size upper bound of (roughly)

S = 2n
δ·p1·p2···pt · exp(n1−pt+1). To match the requirement (logM)3 · logS = o(n), we get that

pt+1 must be larger than 3p1 · · · pt. This leads to an argument in which we require the degree
of the product gates to increase exponentially. This is more or less the cause of the exponential
loss in our argument.

Finally, another natural question is to extend our argument from depth-d regular multilin-
ear formulas to arbitrary depth-d multilinear formulas.
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