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1 Introduction

Algebraic complexity studies the complexity of syntactically computing polynomials using arith-
metic operations. The most natural model for computing polynomials is an algebraic circuit, which
is a directed acyclic graph whose leaves are labeled by either variables from {x1, . . . , xn} or ele-
ments from a field F, and whose internal nodes are labeled by the arithmetic operations + and
×. Each node computes a polynomial in the natural way. The associated complexity measures are
the size (the number of wires) and the depth (the length of a longest path from an input node to the
output node) of the circuit. A circuit whose underlying graph is a tree is called a formula.

Another model of computation, whose power lies between that of circuits and formulas, is that
of an algebraic branching program (ABP). An ABP is a layered directed acyclic graph with a source
node and a sink node, whose edges are labeled by polynomials. An ABP computes a polynomial
in the following way. Every directed source-sink path computes the polynomial that is obtained
from taking the product of all edge labels along the path. The polynomial computed by the ABP is
the sum over all paths of those polynomials.1 In addition to the size and depth of an ABP, another
relevant complexity measure is the width of the program, which is the maximal number of vertices
in a layer. See Section 1.1 for the formal definitions of the models that are considered in this work.

Two of the most important problems in algebraic complexity are (i) proving exponential lower
bounds for arithmetic circuits (i.e., proving that any circuit computing some explicit polynomial f
must be of exponential size), and (ii) giving an efficient deterministic algorithm for the polynomial
identity testing (PIT) problem. The latter is the problem of deciding, given an arithmetic circuit,
formula or ABP computing a polynomial f , whether f is the identically zero polynomial. PIT has
a simple randomized algorithm that follows from the Schwartz-Zippel-DeMillo-Lipton lemma
[Sch80, Zip79, DL78] that says that over a large enough field, a non-zero polynomial evaluates to
a non-zero value on most points. Hence, in order to decide whether f is zero it suffices to evaluate
the circuit/formula/ABP on a random point (which can be done efficiently).

We further note that the randomized algorithm described above only needs the ability to eval-
uate f at a given point. Such algorithms are called black-box PIT algorithms. It is readily seen that
black-box algorithms are equivalent to producing a small hitting set, that is, a setH of points such
that for every non-zero f there is a point in H that f evaluates to non-zero on. Algorithms that
are given the computation graph of the circuit / formula / ABP as input are called white-box algo-
rithms. Naturally, white-box access is much less restrictive and one expects it is easier to obtain
better algorithms in this case.

Apart from being a very natural problem about arithmetic computation, PIT is one of the
most general problems for which an efficient randomized algorithm is known, but an efficient
deterministic one is not. Indeed, many other randomized algorithms, e.g. parallel algorithms for
finding matching in graphs [KUW86, MVV87] or algorithms for polynomial factorization [SV10,
KSS15], reduce to PIT in the sense that derandomization of PIT implies derandomization of these
algorithms as well.

For more background on arithmetic circuits we refer the reader to the survey [SY10].

At first glance, the two problems described above seem rather different, as one is concerned
with proving lower bounds and the other with providing efficient algorithms. However, a se-
ries of works uncovered an intricate web of connections between the two, both in the white-box

1This is analogous to boolean branching programs. There each path computes the AND of edge labels and the
output is the OR of all path-functions.
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[KI04, DSY09] and in the black-box [HS80, Agr05] models. That is, derandomizing PIT implies
lower bounds for circuits, which gives a convincing explanation for why this derandomization
problem is hard. Conversely, an explicit hard polynomial gives a recipe to “fool” small arithmetic
circuits with respect to non-zeroness, in a very similar manner to the hardness-versus-randomness
paradigm in boolean complexity (c.f., e.g., [NW94]).

In light of the hardness of proving lower bounds for general algebraic circuits, research has
focused on trying to understand the effect that structural restrictions, like constant depth and
multilinearity, have on the expressive power of the model.

One research direction that has attracted a lot of attention considers small-depth arithmetic cir-
cuits. Following Valiant et al. [VSBR83], Agrawal and Vinay gave a reduction from general circuits
(of polynomial degree) to depth-4 circuits, that maps subexponential size to subexponential size
[AV08]. This reduction was later improved and extended in [Koi12, Tav15, GKKS13]. In a break-
through work Gupta et al. [GKKS14] proved exponential lower bounds for computing the n× n
determinant by depth-4 homogeneous formulas with bottom fan-in O(

√
n), which is the kind of

circuits one gets from the above depth reduction. In the work that followed, tighter lower bounds
for homogeneous depth-4 circuits were proved both for “hard” polynomials such as the perma-
nent but also for easier polynomials such as the determinant and the iterated matrix multiplication
polynomial [KSS14, FLMS14, KLSS14, KS14b, KS14a].

In parallel, a lot of research effort was also focused on PIT for small-depth circuits with various
restrictions such as bounded top fan-in or multilinearity [DS07, KS07, KS09, SS12, KMSV13, SV11,
OSV15]. Similar to the situation with lower bounds, derandomization of PIT for depth-4 circuits
(or, depth-3 in certain cases) implies derandomization of the general case [AV08, GKKS13]. As
depth-3 multilinear formulas that have small top fan-in are a special case of sum of read-once
arithmetic formulas (here, a read-once formula is an arithmetic formula in which each variable
labels at most one node), Shpilka and Volkovich gave polynomial identity tests for this model
[SV15]. Later, Anderson, van Melkebeek and Volkovich gave a PIT for multilinear read-k formulas,
which extend both models [AvMV15].

Another line of work focused on read-once oblivious ABPs (ROABPs, and we again refer to
Section 1.1 for the exact definition). ROABPs were defined by Nisan [Nis91] in the context of prov-
ing lower bounds for non-commutative formulas. While this model seems a bit restrictive, it was
shown that derandomizing PIT for ROABPs implies derandomization of Noether’s normalization
lemma for certain important varieties [Mul12, FS13a]. It is also not hard to show that ROABPs
are strictly stronger than read-once arithmetic formulas. Another motivation to study this model
is that it is the algebraic analog of a read-once boolean branching program, which arises in the
context of pseudorandomness for small-space computation [Nis92]. Thus, one could hope for
cross-fertilization of ideas between the models that could facilitate progress on both fronts.

Exponential lower bounds for ROABPs were known since their inception [Nis91], and a white-
box polynomial-time PIT algorithm was given by Raz and Shpilka [RS05]. In the black-box setting,
hitting sets of quasipolynomial size were obtained in [FS13b, FSS14, AGKS15], where the last
two papers being applicable even if the order in which the variable are read is unknown. This
marks a striking difference between the algebraic model and the boolean model. Indeed, in the
boolean domain, pseudorandom generators for read-once branching programs in unknown order
are much weaker, in terms of the seed length, than Nisan’s generator [Nis92] which works only if
the order is known. Recently, Gurjar et al. obtained PIT algorithms for sum of ROABPs [GKST16].

In this work, we consider the natural next step, which are read-k oblivious algebraic branching

2



programs. This model generalizes and extends both the models of read-k arithmetic formulas and
sums of ROABPs. We are able to prove exponential lower bounds and to give subexponential-time
PIT algorithms for this model. Prior to our work there were no results known for this model. A
summary of our results appears in Section 1.2.

1.1 Computational Models

In this section we define the computational models we consider in this work. We begin with the
definition of Algebraic Branching Programs (ABPs).
Definition 1.1 (Algebraic Branching Program, [Nis91]). An Algebraic Branching Program (ABP) is
a directed acyclic graph with one vertex s of in-degree zero (the source) and one vertex t of out-degree zero
(the sink). The vertices of the graph are partitioned into layers labeled 0, 1, . . . , L. Edges in the graph can
only go from layer `− 1 to layer `, for 1 ≤ ` ≤ L. The source is the only vertex at layer 0 and the sink
is the only vertex at layer L. Each edge is labeled with a polynomial over a field F in the input variables
{x1, x2, . . . , xn}. Each path from s to t computes the polynomial that is the product of the labels of the path
edges, and the ABP computes the sum, over all s to t paths, of such polynomials.

The width of an ABP is the maximum number of nodes in any layer, and the size of an ABP is the
number of vertices in the ABP. The degree of an ABP is defined to be the maximum degree of the polynomial
edge labels. ♦

The expressive power of ABPs lies between arithmetic formulas and arithmetic circuits. Every
formula of size s can be simulated by an ABP of size s. Similarly, an ABP of width w, degree d and
L layers can be simulated by an arithmetic circuit of size O(wdL2).

In this work we consider a restricted model of ABPs that we call read-k oblivious ABPs. In
an oblivious ABP the labels in each layer must be univariate polynomials in the same variable.
We also restrict each variable to be read in at most k layers while still allowing them to label any
number of the edges in those layers.
Definition 1.2 (Read-k Oblivious ABPs, [FS13b]). An algebraic branching program is said to be oblivi-
ous if for every layer `, all the edge labels in that layer are univariate polynomials in a variable xi` .

Such a branching program is said to be a read-once oblivious ABP (ROABP) if the xi` ’s are distinct
variables, that is, each xi appears in the edge labels of at most one layer.

An oblivious ABP is said to be a read-k if each variable xi appears in the edge labels of at most k
layers. ♦

Remark 1.3. For the remainder of the article, it will be convenient to assume that in a read-k oblivious ABP,
every variable x appears in exactly k layers. This assumption can be made without loss of generality, since
if x appears in k′ < k layers, we can add k− k′ “identity” layers to the program that vacuously read x. This
transformation does not increase the width of the program and increases the length by no more than kn. ♦

A special case of read-k oblivious ABPs is one where the ABPs make “multiple passes” over
the input.
Definition 1.4 (k-pass ABPs). An oblivious ABP is said to be a k-pass ABP if there exists a permutation
π on [n] = {1, 2, . . . , n} such that the ABP reads variables in the order

xπ(1), . . . , xπ(n), xπ(1), . . . , xπ(n), . . . , xπ(1), . . . , xπ(n)︸ ︷︷ ︸
k times

.
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An oblivious ABP is said to be a k-pass varying-order ABP if there are permutations π1, · · · , πk over [n]
such that the ABP reads variables in the order

xπ1(1), . . . , xπ1(n), xπ2(1), . . . , xπ2(n), . . . , xπk(1), . . . , xπk(n). ♦

1.2 Our Results

We give various results about the class of read-k oblivious ABPs, including lower bounds, PIT
algorithms and separations.

Lower Bounds: We show an explicit polynomial f such that for bounded k any read-k oblivious
ABP computing f must be of exponential width.

Theorem 1.5 (proved in Section 4). There exists an explicit polynomial f , which is computed by a depth-
3 polynomial-size multilinear circuit, such that any read-k oblivious ABP computing f must have width
exp(n/kO(k)).

Prior to this work, there were no lower bounds for this model.

Identity Testing: For the class of k-pass ABPs with bounded k, we provide a black-box PIT algo-
rithm that runs in quasipolynomial time.

Theorem 1.6 (proved in Section 5.1). There exists a black-box PIT algorithm for the class of n-variate,
degree-d, and width-w k-pass ABPs that runs in time (nw2kd)O(log n).

For the more general class of read-k oblivious ABPs, we provide a white-box PIT algorithm
that runs in subexponential time.

Theorem 1.7 (proved in Section 5). There exists a white-box PIT algorithm for the class of n-variate,

degree-d, and width-w read-k oblivious ABPs that runs in time (nwd)Õ(n1−1/2k−1
)·exp(k2). Furthermore,

white-box access is only needed to know the order in which the variables are read. That is, given this order,
we construct an explicit hitting set of the above size for the class of read-k oblivious ABPs that read their
variables in that order.

Separations: Recently, Kayal, Nair and Saha [KNS16] constructed a polynomial f that can be
computed by a sum of two ROABPs in different orders, each of constant width, such that any
ROABP computing f must be of width 2Ω(n). Note that sum of two ROABPs is a special case of a
2-pass varying-order ABP.

In order to exemplify the strength of the multiple-reads model, we show a polynomial that
can be computed by a small 2-pass varying-order ABP, but cannot be computed by a small sum of
ROABPs of small width.

Theorem 1.8 (proved in Section 3). There exists an explicit polynomial f on n2 variables that is computed
by a 2-pass varying-order ABP of constant width, but any sum of k ROABPs computing f must be of width
exp(Ω(

√
n/2k)).
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1.3 Related Work

Algebraic Models As mentioned before, Nisan [Nis91] proved exponential lower bounds for
ROABPs, and Raz and Shpilka [RS05] gave a white-box polynomial-time PIT algorithm for this
model.

Forbes and Shpilka [FS13b] were the first to consider the black-box version of this problem,
and obtained a hitting set of size (nwd)O(log n), for n-variate, degree-d and width-w ROABPs, if
the order in which the variables are read is known in advance. Forbes, Shpilka and Saptharishi
[FSS14] obtained a hitting set of size (nwd)O(d log(w) log n) for unknown order ROABPs. This was
improved later by Agrawal et al. [AGKS15] who obtained a hitting set of size (nwd)O(log n) which
matches the parameters of the known-order case.

For models that read variables more than once, much less was known. Gurjar et al. [GKST16]
considered the model of a sum of k ROABPs, and obtained a white-box algorithm that runs in time
(ndw2k

)O(k), and a black-box algorithm that runs in time (ndw)O(k2k log(ndw)), so that the running
time is polynomial in the former case and quasipolynomial in the latter, when k is constant. A sum
of k ROABPs can be simulated by read-k oblivious ABPs, and we show (in Section 3) that read-k
oblivious ABPs are in fact strictly stronger.

Lower bounds against the model of sums of ROABPs were obtained in a recent work of Arvind
and Raja [AR16], who showed that for every constant ε > 0, if the permanent is computed by a
sum of n1−ε ROABPs, then at least one of the ROABPs must be of width 2Ω(nε).

We also mention an earlier work of Jansen et al. [JQS10b], who also gave white-box and black-
box tests for the weaker model of sum of constantly many read-once ABPs, where in their defini-
tion every variable is allowed to label only a single edge in the ABP. In a follow-up work [JQS10a],
the same authors extended the results for read-k ABPs in which all paths read the variables in the
same order, and again, k is a bound on the total number of labels on which a variable is allowed to
appear.

Another model which is subsumed by oblivious read-k ABPs is that of bounded-read formulas.
Shpilka and Volkovich [SV15] constructed quasipolynomial-size hitting set for read-once formu-
las. This was later improved by Minahan and Volkovich [MV17] who obtained a polynomial-
size hitting set. Anderson, van Melkebeek and Volkovich [AvMV15] extended this line of re-
sults to multilinear read-k formulas and obtained a polynomial-time white-box algorithm and
quasipolynomial-time black-box algorithm. The natural simulation of read-k formulas by ABPs
produces an ABP in which every variable labels at most k edges, and it can be seen that such
programs can be converted to read-k oblivious ABPs with only a polynomial overhead.

To conclude, earlier results apply only to restricted submodels of read-k oblivious ABPs.

Boolean Models Let us now make a small detour and consider the boolean analogs for our
models. A (boolean) branching program is a directed acyclic graph with a source node s and
two sink nodes, t0 and t1. Each internal node is labeled by a variable xi with two outgoing edges,
labeled 0 and 1. The program computes a boolean function on an input (x1, . . . , xn) ∈ {0, 1}n by
following the corresponding path along the program.

A read-k-times boolean branching program is allowed to query every variable at most k times
along every path from the source to the sink. Note that this is more general than our definition of
read-k oblivious algebraic branching programs because each variable is only restricted to appear
at most k times on a each path, rather than in at most k layers. Further distinction is made in
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the boolean case between semantic read-k boolean branching programs, in which this restriction is
enforced only on paths that are consistent with some input, and syntactic read-k boolean branch-
ing programs, in which this restriction applies for all paths (further note that in the read-once
case, there is no distinction between the syntactic and the semantic model because every path is
consistent with some input). Our model of read-k oblivious ABPs does not permit an analogous
distinction.

Exponential lower bounds for read-once boolean branching programs for explicit functions
have been known since the 1980’s [Zák84, BHST87, Weg88], even for functions that are computed
by a polynomial-size read-twice boolean branching program.

Okolnishnikova [Oko91], and Borodin, Razborov and Smolensky [BRS93] extended these re-
sults and obtained exponential lower bounds for syntactic read-k-times boolean branching pro-
grams, by giving an explicit boolean function f such that every syntactic read-k-times branching
program for f has size exp(n/2O(k)) (in fact, the lower bound in the second work also holds for
the stronger class of non-deterministic branching programs).

A strong separation result was obtain by Thathachar [Tha98], who showed a hierarchy theorem
for syntactic read-k-times boolean branching program, by giving, for every k, a boolean function
f which is computed by a linear-size syntactic read-(k + 1)-times branching program such that
every syntactic read-k-times branching program computing f must have size exp(Ω(n1/k/2O(k))).

The semantic model seemed more difficult, but nevertheless Ajtai [Ajt05] was able to prove
an exponential lower bound for semantic read-k-times programs (when k is constant), which was
extended by Beame at al. [BSSV03] to randomized branching programs.

Derandomizing PIT is the algebraic analog of constructing pseudorandom generators (PRGs)
for boolean models. A PRG for a class C of boolean circuits is an easily computable function
G : {0, 1}` → {0, 1}n, such that for any circuit C ∈ C, the probability distributions C(Un) and
C(G(U`)) are ε-close, where Um is the uniform distribution over {0, 1}m.

Nisan [Nis92] constructed a PRG for polynomial-size read-once oblivious branching programs
with seed length O(log2 n). This was followed by a different construction with the same seed
length by Impagliazzo, Nisan and Wigderson [INW94]. However, for the constructions to work it
is crucial that the order in which the variables are read is known in advance.

Beyond that, and despite a large body of work devoted to this topic [BDVY13, BPW11, BRRY14,
De11, GMR+12, IMZ12, KNP11, RSV13, Ste12, SVW14], all the results for the unknown order case
or for read-k oblivious branching programs have much larger seed length, unless further structural
restrictions are put on the program (such as very small width, regularity, or being a permutation
branching program). Specifically, we highlight that even for read-2 oblivious branching programs,
the best result is by Impagliazzo, Meka and Zuckerman [IMZ12] who gave a PRG with seed length
s1/2+o(1) for size s branching program (note that the the dependence here is on s rather than on
n). In particular, no non-trivial results are known for general polynomial-size read-2 oblivious
boolean branching program.

1.4 Proof Technique

Before delving into the details of our proof technique it is perhaps instructive to think again about
read-once branching programs. Because read-once branching programs can only read each vari-
able once we can split their computation into two subcomputations over disjoint sets of variables.
The interface between the two subcomputations is a “window” of vertices limited by the width
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w of the branching program. If w is small relative to the number of variables, then the branching
program must “forget” most of the values of the variables it read during the first subcomputation
before it proceeds with the second subcomputation. This read-once limitation has been success-
fully exploited by divide-and-conquer strategies to derandomize read-once branching programs
in both the boolean [Nis92] and algebraic [JQS10b, FS13b, FSS14, AGKS15] models.

1.4.1 Evaluation dimension and ROABPs

Unfortunately, the above intuition breaks down when we allow a variable to be read multiple
times, and this model requires a different strategy. Our main starting point is the observation that,
perhaps surprisingly, multiple “passes” over the input variables, in the same order, do not provide
the program with much additional power. That is, a k-pass ABP can be simulated by a ROABP,
with a blow-up which is exponential in k (hence, only a polynomial blow-up, if k is constant).

This fact can be directly seen through analysis of the evaluation dimension measure. For a poly-
nomial f ∈ F[x1, . . . , xn] and a subset of variables y ⊆ {x1, . . . , xn}, we denote by evaly( f ) the
F-linear subspace of F[x1, . . . , xn] that is spanned by the polynomials obtained from f by fixing
the variables in y to arbitrary elements in F. The evaluation dimension of f with respect to a
partition y, y of the variables, which is denoted evalDimy,y( f ), is the dimension of evaly( f ). Over
large enough fields, this dimension equals the rank of the partial derivative matrix associated with
this partition as defined by Nisan [Nis91]. In many contexts, however, it is easier to work with the
evaluation dimension. We refer to Chapter 4 of [For14] for a detailed and formal discussion on
this equivalence.

The importance of the evaluation dimension measure stems from the fact that f can be com-
puted by a width-w ROABP in the order x1, x2, . . . , xn if and only if evalDim{x1,...,xi},{xi+1,...,xn}( f ) ≤
w for every 1 ≤ i ≤ n (see Theorem 2.3). Thus, this measure provides a precise characterization
for the amount of resources needed to compute a polynomial in this model.

1.4.2 Evaluation dimension and k-pass ABPs

We are able to adapt the proof of the “only if” part of the above fact in order to show that if
f is computed by a k-pass ABP (recall, here the ABP reads the n variables k times in the same
order) then evalDim{x1,...,xi},{xi+1,...,xn}( f ) ≤ w2k for every i ∈ [n]. That is, k passes over the input
in the same order cannot create many independent evaluations. Then, using the “if” part of the
equivalence, it follows that f can also be computed using a ROABP of width w2k (see Lemma 2.5).

This immediately implies a hitting set of size (ndw2k)O(log n) for the class of k-pass ABPs (The-
orem 1.6). It also implies exponential lower bounds for this model, simply by applying the cor-
responding results for ROABPs. It is still not clear, however, how to extend this to the general
case, since even read-2 oblivious ABPs are exponentially stronger than ROABPs. Indeed, recall
that [KNS16] give an exponential separation between a sum of two ROABPs and ROABPs. We
also give an exponential separation between 2-pass varying-order ABPs from sums of ROABPs in
Section 3.

1.4.3 PIT for read-k oblivious ABPs

Before discussing our identity test for read-k oblivious ABPs let us focus, for the time being, on
the simplest instance of the more general problem, by considering a 2-pass varying-order ABP
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computing a non-zero polynomial f . That is, consider an ABP A of width w that, without loss of
generality, reads the variables in the order x1, x2, . . . , xn, xπ(1), xπ(2), . . . , xπ(n), for some permuta-
tion π. As mentioned above, we cannot possibly hope to simulate any such branching program
by a small ROABP. We can, however, find a large subset of the variables y such that if we fix all
the other variables arbitrarily the resulting polynomial has a small ROABP. Equivalently, we can
instead think of f as a polynomial in the variables of y over the field of rational functions F(y),
that is, f ∈ F(y)[y].

By the well-known Erdős–Szekeres Theorem [ES35], any sequence of n distinct integers con-
tains a subsequence of length

√
n that is either monotonically increasing or monotonically de-

creasing. Applied to the sequence xπ(1), xπ(2), . . . , xπ(n), with respect to the natural order x1 <
x2 < · · · < xn, we get a monotone subsequence of variables. For the sake of exposition, assume
that this subsequence is monotonically increasing (the case of a decreasing sequence is, some-
what counter-intuitively, even simpler). Let y =

{
y1, . . . , y√n

}
be the set of

√
n variables that

appear in this monotone subsequence. If we fix all the variables in y to elements of F, we are
left, by the monotonicity property, with a branching program that reads the variables in the order
y1, y2, . . . , y√n, y1, y2, . . . , y√n. Observe that this is exactly a 2-pass branching program! Moreover,
the previous discussion on k-pass ABPs applies here, and if f is non-zero, we can efficiently find an
assignment to the variables in y from F that keeps the polynomial non-zero. Having reached this
point, we can “resurrect” the variables in y. Note that we are left with a non-zero 2-pass varying-
order ABP on only n−

√
n variables. From here we apply the same argument repeatedly to this

2-pass varying-order ABP and after O(
√

n) iterations we are guaranteed to find an assignment (to
all n variables) on which f evaluates to a non-zero output.

In each iteration we construct a hitting set of size (nwd)O(log n) for width-poly(w) ROABPs.
The final hitting set is the Cartesian product of the hitting sets produced by each of the O(

√
n)

iterations, and hence the total size of the hitting set is (nwd)Õ(
√

n), as promised by Theorem 1.7.
Generalizing the argument above for k-pass varying-order ABPs is fairly straightforward, and

is done using repeated applications of the Erdős–Szekeres Theorem to each of the k pass sequences
in order. This produces a subsequence on a subset y of the variables which is monotone in every
pass. Hence, as before, when the branching program A is restricted to y it becomes a k-pass ABP.
The repeated application of the Erdős–Szekeres theorem weakens the lower bound on the size of
y from

√
n to n1/2k−1

, and accounts for most of the loss in the parameters in our theorem.2

In order to handle general read-k oblivious ABPs, we need additional ideas. We observe that
after repeatedly applying the Erdős–Szekeres Theorem to the subsequence of every “read”, we do
not get a k-pass ABP as before, but rather k monotone sequences that are intertwined together. We
next show that by discarding more variables, but not too many, we get a structure that we call
a “k-regularly interleaving sequence”. This is a technical notion which is presented in full detail
in Section 5, but the main point is that this definition allows us to argue that the obtained read-k
oblivious ABP has a (small) evaluation dimension and therefore it can be simulated by a not-too-
large ROABP. Obtaining this k-regularly interleaving property is the main technical difficulty of
the proof.

2This lower bound on the length of a subsequence which is monotone in every pass is the best possible. This fact
is attributed to de Bruijn (unpublished, see [Kru53]), and the actual construction which shows that the lower bound is
tight appears in [AFK85].
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1.4.4 Lower bounds for read-k oblivious ABPs

The arguments above that give PIT algorithms already give lower bounds for read-k oblivious
ABPs. We have shown that if f is computed by a 2-pass varying-order ABP of width w, then there
exist a subset of

√
n variables y such that f is computed by an ROABP of width w4 over F(y). This

implies that if we pick f so that every restriction to
√

n variables has an exponential (in
√

n) lower
bound for ROABPs, we would receive a subexponential lower bound for computing f in a 2-pass
varying-order ABP. These arguments, again, generalize to read-k oblivious ABPs.

In order to get an exponential lower bound (Theorem 1.5), we observe that we do not need to
bound the evaluation dimension for every prefix (namely, to show that a subset of the variables is
computed by a small ROABP), but only to show that the evaluation dimension is small for some
prefix. This is much easier to achieve since we do not need the order of the reads to be “nicely-
behaved” with respect to every prefix, but just with respect to a prefix.

In particular, we invoke a simple averaging argument to show that if f is computed by a width-
w read-k oblivious ABP, then there exist sets of variables y (of size at least n/kO(k)) and z (of size at
most n/10), so that whenever we fix the variables in z we get that evalDimy,y(g) ≤ w2k, where g is
any restriction of f obtained by fixing the variables in z. We then construct an explicit polynomial
whose evaluation dimension with respect to every set remains large, even after arbitrarily fixing
a small set of the variables (see Theorem 4.3).

1.4.5 Separating 2-pass ABPs from sums of ROABPs

In order to prove the separation between 2-pass varying-order ABPs and sums of k ROABPs (The-
orem 1.8), we use a structural result proved by Gurjar et al. [GKST16] that gives a way to argue
by induction on ROABPs. Given a polynomial f which is computed by a sum h1 + h2 + · · · hk of
ROABPs of width w, we would like to find a related polynomial f ′ that is computed by a sum of
k − 1 ROABPs of perhaps slightly larger width. Here, the evaluation dimension plays a role as
well. The way to do this is to pick a non-trivial linear combination of w + 1 partial evaluations of
f that make h1 zero, which is possible since h1 has a small evaluation dimension with respect to
prefixes of variables corresponding to the order in which the variables are read in h1. One can then
show that, having eliminated h1, each of the other summands can still be computed by a ROABP
of width w(w + 1).

We provide a simple polynomial computed by a 2-pass varying-order ROABP whose partial
evaluations are complex enough in the sense that they contain many linear independent evalua-
tions and also a “scaled-down” version of the original polynomial as a projection. It then follows
by induction, using the above arguments, that this polynomial cannot be computed by a small
sum of small ROABPs (see Lemma 3.6).

1.5 Organization

We start with some preliminaries and useful facts about the evaluation dimension in Section 2 that
almost all the results in this article rely on. In Section 3, we present the separation between the
class of 2-pass varying-order ABPs and sums of ROABPs. Following that, in Section 4, we present
an exponential lower bound for the class of read-k oblivious ABPs. Then in Section 5 we present
the white-box PIT for read-k oblivious ABPs. Finally, we conclude with some open problems in
Section 6.
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2 Preliminaries

2.1 Notation

For n ∈N, we denote by [n] the set {1, 2, . . . , n}. For disjoint subsets S, T we denote by St T their
disjoint union.

We commonly denote by x a set of n indeterminates {x1, . . . , xn}, where the number of inde-
terminates n is understood from the context. Although x is a set we often use the natural ordering
of its elements, x1 < x2 < . . . < xn, to treat it and its subsets as sequences. For i ∈ [n], we use x[i]
to denote the set {x1, . . . , xi} which is a prefix of x. For a subset y ⊆ x of variables, we denote its
complement by y.

For a polynomial f ∈ F[x], a set of variable y ⊆ x and vector a = (a1, . . . , a|y|) ∈ F|y|, we
denote by f |y=a the restriction of f obtained by fixing the j-th variable in y to aj.

In our PIT algorithm, we need to combine hitting sets for smaller sets of variables. Hence, for
a partition of x, y1 t y2 t · · · t ym = [n], and sets Hi ⊆ F|yi |, we denote by Hy1

1 × · · · × H
ym
m the

set of all vectors in Fn whose restriction to the coordinates indexed by yi is an element ofHi (note
that here we naturally associate a subset y ⊆ x with a subset of indices in [n]). That is

Hy1
1 × · · · ×H

ym
m =

{
v ∈ Fn : ∀i ∈ [m], v|yi ∈ Hi

}
.

2.2 ABPs and iterated matrix products

The computation of an ABP corresponds to iterated multiplication of matrices of polynomials.
In the case of oblivious branching programs, the ABP computes an iterated matrix product of
univariate matrices. We record this fact as a lemma, and refer to [For14] for a proof and a detailed
discussion on this subject.
Lemma 2.1. Suppose f is a polynomial computed by an oblivious ABP A of width w and length `, that
reads the variables in some order xi1 , xi2 , . . . , xi` . Then f is the (1, 1) entry of a matrix of the form

A1(xi1) · A2(xi2) · · · A`(xi`)

where for every j ∈ [`], Aj ∈ F[xij ]
w×w is a w× w matrix in which each entry is a univariate polynomial

in xij .

2.3 Evaluation dimension and ROABPs

We now define a complexity measure for polynomials that is useful for analyzing read-k oblivious
ABPs.
Definition 2.2 (Evaluation dimension). Let f ∈ F[x] be a polynomial and y ⊆ x be subset of variables.
We define evaly( f ) to be

evaly( f ) = span
{

f |y=a : a ∈ F|y|
}
⊆ F[y],

which is the space of polynomials spanned by all partial evaluations of the s variables in f .
If x = y t z tw we define the evaluation dimension of f with respect to y t z over F(w), which

shall be denoted by evalDimy,z;w( f ), as the dimension of the space evaly( f ) when taken over the field of
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rational functions F(w). That is, we first “move” the variables w into the field and treat them as constants,
and then consider the dimension of evaly( f ) over F(w).

In the special case where w = ∅, we shall just use the notation evalDimy,z( f ). ♦

If |F| > deg( f ), then evalDimy,z( f ) is the rank of the partial derivative matrix with respect to y,z,
as defined by Nisan [Nis91]. The rows of the partial derivative matrix are indexed by monomials
my over the variables y and its columns are indexed by monomials mz over the variables z. The
(my, mz) entry is the coefficient of mymz in the polynomial f . Although these two perspectives
are equivalent, the formulation via evaluation dimension is sometimes easier to work with. The
evaluation dimension measure is useful when arguing about ROABPs since it characterizes the
width needed to compute a polynomial f using a ROABP.

Theorem 2.3 ([Nis91], and see also [For14]). Let f be a polynomial on x = {x1, . . . , xn} with individual
degree at most d, and suppose for every i ∈ [n] we have evalDimx[i],x[i]( f ) ≤ w. Then, there is a ROABP
of width w in the order x1, . . . , xn with individual degree at most d that computes f .

Conversely, if evalDimx[i],x[i]( f ) = w, then in any ROABP that computes f in the order x1, x2, . . . , xn,
the width of the i-th layer must be at least w.

Below is an example of a polynomial that has large evaluation dimension with respect to a
specific subset of the variables. This example is helpful not only because it is simple and illustrates
evaluation dimension, but also because all of our constructions of hard polynomials are based on
a reduction to this polynomial.

Lemma 2.4. Let f (u, v, w) be a polynomial of the form

f =

(
t

∏
i=1

(`i(v) + `′i(u))

)
· g(u, w),

where:

1. For every a ∈ F|u|, it holds that g|u=a = g(a, w) 6≡ 0.

2. {`i}t
i=1 is a set of linearly-independent linear polynomials, and so is {`′i}

t
i=1.

Then evalDimu,vtw( f ) ≥ 2t.

Proof. Since the `i’s and `′i’s are linearly independent we can apply linear transformations to the
variables, which cannot increase the dimension, so that for all i ∈ [t], `i(v) maps to vi and `′i(u)
maps to ui. Hence, we may assume without loss of generality that

f =

(
t

∏
i=1

(vi + ui)

)
· g(u, w).

Additionally, for any a = (a1, . . . , at) ∈ {0, 1}t we can fix u to a in f so that

f |u=a =

(
t

∏
i=1

(vi + ai)

)
· g|u=a(w) ∈ evalu( f ).

The 2t polynomials
{

∏t
i=1(vi + ai) : a ∈ {0, 1}t

}
are linearly independent. Further, by the as-

sumption on g, we also have that g(a, w) is non-zero. Hence these polynomials (in v) remain
linearly independent even when multiplied by the variable-disjoint polynomial g(a, w) and so
evalDimu,vtw( f ) ≥ 2t.
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The following simple lemma is an illustration of using the evaluation dimension of a polyno-
mial to obtain a small ROABP for that polynomial.

Lemma 2.5. Let f ∈ F[x1, . . . , xn] be a polynomial computed by a k-pass ABP of width w and degree d,
with the variables read in order x1, x2, . . . , xn. Then f can be computed by a width-w2k read-once ABP with
degree dk and the same read order.

Proof. Let A be the k-pass ABP of width w and degree d that computes f . Recall that for any
i ∈ [n], we denote x[i] = {x1, . . . , xi}. The assumption on A implies that the individual degree of
each variable is at most dk, and so by Theorem 2.3, it is enough to show that for any i ∈ [n],

evalDimx[i],x[i]( f ) ≤ w2k.

By the assumption on A and by Lemma 2.1, for every i ∈ [n] and j ∈ [k] there exists a matrix
Mi,j ∈ F[xi]

w×w such that the entries of Mi,j are univariate polynomials in xi of degree d and

f =
(

M1,1(x1)M2,1(x2) · · ·Mn,1(xn)M1,2(x1)M2,2(x2) · · ·Mn,k(xn)
)

1,1
.

Fix i ∈ [n], and consider any assignment of the form x[i] = a for a = (a1, . . . , ai) ∈ Fi. Having
fixed x[i], we get that for some k matrices N1(a), . . . , Nk(a), that depend on a,

f |x[i]=a =
(

N1(a) ·Mi+1,1(xi+1) · · ·Mn,1(xn) · N2(a) ·Mi+1,2(xi+1) · · ·Mn,2(xn)

· · · Nk(a) ·Mi+1,k(xi+1) · · ·Mn,k(xn)
)

1,1
. (2.6)

It follows that any polynomial g(xi+1, . . . , xn) ∈ evalx[i]( f ) is completely determined by N1, . . . , Nk

which have w2 entries each. More precisely, let {B1, . . . , Bw2} be a basis for Fw×w. For each j ∈ [k],
we can write Nj(a) ∈ Fw×w in (2.6) as a linear combination of {B1, . . . , Bw2}. Then, by expanding
the matrix product in (2.6), we see that every polynomial of the form f |x[i]=a (and as a consequence,
every polynomial in evalx[i]( f )) is spanned by the w2k polynomials of the form(

Bσ1 ·Mi+1,1(xi+1) · · ·Mn,1(xn) · Bσ2 ·Mi+1,2(xi+1) · · ·Mn,2(xn) · · · Bσk ·Mi+1,k(xi+1) · · ·Mn,k(xn)
)

1,1

for σ1, . . . , σk ∈ [w2], which implies that evalDimx[i],x[i]( f ) ≤ w2k. By Theorem 2.3, the claim fol-
lows.

In fact, the proof of Lemma 2.5 permits a slight generalization, by weakening the assumptions
on the ABP, which is captured by the following definition.
Definition 2.7. Let A be an ABP that computes a polynomial f ∈ F[x1, . . . , xn]. We say that A has the
k-gap property with respect to {x1, . . . , xi}, if there exist k matrices M1, . . . , Mk ∈ Fw×w[xi+1, . . . , xn]
such that for every a ∈ Fi, there exists k matrices N1(a), . . . , Nk(a) ∈ Fw×w such that

f |xi=a =
(

N1(a) ·M1(xi+1, . . . , xn) · N2(a) ·M2(xi+1, . . . , xn)

· · · Nk(a) ·Mk(xi+1, . . . , xn)
)

1,1
. (2.8)

A is simply said to have the k-gap property if it has this property with respect to x[i], for every i ∈ [n]. ♦
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x1 x2 x3 x4 x1 x2 x1 x2 x3 x4 x3 x4

Figure 1: An ABP that reads the variables in this (left-to-right) order is a read-3 ABP that has the 2-gap property with
respect to {x1, x2}. However, an ABP that reads the variables in this order does not have the 2-gap property with
respect to the prefixes {x1} and {x1, x2, x3} (though it does have the 3-gap property for these prefixes).

Note that the k-gap property is implicitly defined with respect to the natural order of x, x1 <
x2 < · · · < xn. Figure 1 provides a pictorial explanation for the choice of this terminology.
Using the same arguments as in the proof of Lemma 2.5, we obtain the following lemma.
Lemma 2.9. Let f ∈ F[x1, . . . , xn] be a polynomial computed by an ABP of width w of individual degree d
that has the k-gap property. Then f can be computed by a width-w2k read-once ABP, with individual degree
dk, such that the variables are read in order x1, x2, . . . , xn.

3 Separating 2-pass ABPs from sums of ROABPs

In order to motivate our study of read-k oblivious ABP, we begin by demonstrating a polynomial
that can be computed by a constant-width, 2-pass varying-order ABP, and yet cannot be computed
by a small sum of polynomial-width ROABPs. Recall that every sum of k ROABPs can be realized
by an oblivious read-k ABP. Thus, even a weak, but non-trivial, form of read-k oblivious ABPs, for
k = 2, is already stronger than sums of ROABPs.

Suppose x = {x1,1, . . . , xn,n} is a set of n2 variables. It is useful to think of x as an n× n matrix
X such that xi,j appears in the (i, j)-th entry. For every m ∈ [n], define

rowSumm = ∑
j

xm,j and colSumm = ∑
i

xi,m.

Let

Pn(x) =

(
n

∏
i=1

rowSumi

)
·
(

n

∏
j=1

colSumj

)
. (3.1)

Observe that for all i, j, rowSumi and colSumj can be computed by width-2 ROABPs, and
therefore ∏n

i=1 rowSumi and ∏n
j=1 colSumj can also be computed by a ROABP of the same width.

It follows that their product Pn can be computed by a 2-pass varying-order ABP.

Theorem 3.2 (Restatement of Theorem 1.8). Let Pn(x1,1, . . . , xn,n) be the n2-variate polynomial defined
in (3.1). For every k > 0, any sum of k ROABPs that computes it must have width exp(

√
n/2k).

The proof of this theorem exploits the structure of sums of few ROABPs that Gurjar, Korwar,
Saxena and Thierauf [GKST16] used to construct hitting sets for this class of ABPs. Our argument
requires the following lemma that is implicit in their result; for completeness, we provide a proof.

Lemma 3.3 (Implicit in [GKST16]). Let f = h1 + · · ·+ hk ∈ F[x1, x2, . . . , xn] where each hi is computed
by a width-w ROABP in possibly different orders. Then, for every 0 < t < n, there exists a subset y ⊆ x of
t variables such that for every set of w + 1 partial assignments a1, . . . , aw+1 ∈ Ft, there is some non-trivial
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linear combination of
{

f |y=ai

}t
i=1 that is computable by a sum of c − 1 ROABPs of width w(w + 1) in

possibly different orders. That is, there exists α1, . . . , αw+1 ∈ F, not all zero, such that

w+1

∑
i=1

αi · f |y=ai = h′1 + · · ·+ h′k−1

where each h′i is a ROABP of width at most w(w + 1).

Proof. Let y be the first t variables that are read in the ROABP that computes hk. Since hk is
computed by a width-w ROABP, evalDimy,y(h1) ≤ w. Hence, every w + 1 partial evaluations{

hk|y=ai

}w+1
i=1 are linearly dependent, that is, there exist α1, . . . , αw+1 ∈ F, not all zero, such that

w+1

∑
i=1

αihk|y=ai = 0. (3.4)

Consider the polynomial ∑w+1
i=1 αi · f |y=ai . By the assumption on f ,

w+1

∑
i=1

αi · f |y=ai =
w+1

∑
i=1

αi

k

∑
j=1

hj|y=ai

=
w+1

∑
i=1

αi · hk|y=ai +
k−1

∑
j=1

w+1

∑
i=1

αihj|y=ai

=
k−1

∑
j=1

w+1

∑
i=1

αihj|y=ai , (3.5)

where the last equality follows from (3.4).
Hence, to prove the statement of the lemma it remains to be shown that for every j ∈ [k− 1],

∑w+1
i=1 αihj|y=ai is computed by a ROABP of width w(w + 1). Fix such j. Observe that since hj is

computed by a ROABP of width w, for every i ∈ [w + 1] we have that hj|y=ai is computed by
a ROABP of width w (by replacing the variables with the appropriate constants in the ABP that
computes hj), and furthermore all the ROABPs of the form hj|y=ai for i ∈ [w + 1] are in the same
order (inherited from the order of the ROABP computing hj).

Therefore, we can connect those (w+ 1) ROABPs in parallel to obtain a single ROABP, of width
w(w + 1), computing ∑w+1

i=1 αihj|y=ai .

The following lemma shows that the polynomial Pn defined in (3.1) has many linearly-independent
partial evaluations.

Lemma 3.6. Let s be a subset of x = {x1,1, . . . , xn,n} of size t < n. Then there exists r ≥ 2
√

t par-
tial evaluations a1, · · · , ar ∈ {0, 1}t ⊆ Ft such that the polynomials {Pn|s=a1 , . . . , Pn|s=ar} are linearly
independent.

Furthermore, for any g ∈ span {Pn|s=ai : i ∈ [r]}, there is a set y ⊆ x \ s of (n− t− 1)2 variables,
such that Pn−t−1(y) can be obtained as a projection of g: namely, for z = x \ (y ∪ s) we can find a ∈
Fn−|s|−|y| such that g|z=a = γ · Pn−t−1(y), for some non-zero γ ∈ F.

14



Proof. Recall that we think of the n2 variables as an n× n matrix X. By rearranging the rows and
columns of X and relabeling, we can assume that all variables in s are present in the first a rows
and first b columns. Observe that a, b ≤ t. We can assume that a ≤ b, as otherwise we can work
with the transpose of X. Since ab ≥ t, we also have b ≥

√
t. Additionally, any element of evals(Pn)

is divisible by Q = ∏i>a rowSumi ·∏j>b colSumj and hence we shall just work with

P′ =
a

∏
i=1

rowSumi ·
b

∏
j=1

colSumj .

In the [a]× [b] sub-matrix, set all variables not in s to zero, and let P′′ be the resulting polynomial.
Clearly, it suffices to establish linear independence of partial evaluations of P′′. We label the re-
maining variables in the first b columns by u if they belong to s and by v otherwise. The variables
which are not in the first b columns are labeled by w (see Figure 2).

a

b

u

v
w

Figure 2: Labeling of variables in the matrix. Variables in the top [a]× [b] submatrix which are not in s are set to 0.

Then, we can write

P′′ =
b

∏
i=1

(`i(v) + `′i(u)) · g(u, w),

so that we have the properties:

1. For i 6= j, `i and `j are supported on disjoint sets of variables, because they correspond to
different column sums, and similarly for `′i and `′j. In particular, each of the sets {`i}b

i=1 and

{`′i}
b
i=1 is linearly independent.

2. g is the product the first a row sums. This means that g is a product of variable-disjoint linear
functions in u and w where each depends on at least one variable in w. This implies that for
any a ∈ F|u|, g(a, w) 6≡ 0.

By Lemma 2.4, evalDimu(P′′) ≥ 2b ≥ 2
√

t. This implies that

evalDims(P′) ≥ evalDims(P′′) ≥ evalDimu(P′′) ≥ 2
√

t.

Hence, there exists r ≥ 2
√

t evaluations a1, . . . , ar for the variables in s for which the set of poly-
nomials {P′n|s=a1 , . . . , P′n|s=ar} are linearly independent. It also follows that the set of polynomials
{Pn|s=a1 , . . . , Pn|s=ar} are linearly independent as well. This completes the first claim of the lemma.

Now observe that since Q divides each Pn|s=ai it follows that any non-trivial linear combination
of {Pn|s=a1 , . . . , Pn|s=ar} is a non-zero multiple of Q. Let us fix one such linear combination g =
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h ·Q for a non-zero polynomial h. Note that h depends on just the variables in the first a rows and
first b columns. By the Schwartz-Zippel-DeMillo-Lipton lemma [Sch80, Zip79, DL78] there exists
an assignment to the variables in the first t rows and the first t columns that keeps h ·Q non-zero.
If y′ =

{
yij : i ∈ [n− t], j ∈ [n− t]

}
is a relabeling of the variables in the last (n − t) rows and

columns, such an evaluation to the first t rows and columns would result in a polynomial of the
form

Q′ =
n−t

∏
i=1

(rowSumi(y′) + αi) ·
n−t

∏
j=1

(colSumj(y′) + β j)

for some field elements
{

αi, β j : i, j ∈ [n− t]
}

. By further setting yi,n−t = (−αi) and yn−t,j =
(−β j) for i, j ∈ [n− t− 1], and fixing yn−t,n−t to a value that preserves non-zeroness, we obtain
the projection up to a non-zero constant factor γ ∈ F.

Q′′ = γ ·
n−t−1

∏
i=1

rowSumi(y) ·
n−t−1

∏
j=1

colSumj(y)

where y = y′ \
{

yij : i = n− t or j = n− t
}

, which equals Pn−t−1(y).

With the above two lemmas, Theorem 3.2 is straightforward.

Proof of Theorem 3.2. The proof is a simple induction on k. The base case, k = 1, follows immedi-
ately from Lemma 3.6 and the evaluation dimension characterization of ROABPs, Theorem 2.3.

For k > 1, we show that if Pn is computable by a sum of k ROABPs of width at most w, then

n ≤ log2(w + 1) + log2 ((w + 1)2)+ · · · log2
(
(w + 1)2k−1

)
+ k.

Let us assume the hypothesis is true for k− 1 and we now prove it for k. Suppose Pn is computable
by a sum of k ROABPs of width w. Assume that t = log2(w + 1) < n, for otherwise the lower
bound follows immediately. By Lemma 3.3, there is some set s of t variables such that for any
r = (w + 1) partial evaluations a1, . . . , ar on s, some linear combination is computable by a sum
of k− 1 ROABPs of width w(w + 1).

On the other hand, Lemma 3.6 states that we can find r ≥ 2
√

t = w + 1 partial evaluations on
s that are linearly independent and any linear combination of them can be written has Pn−t−1 as a
projection.

Therefore, if Pn is computable by a sum of k ROABPs of width w, then Pn−t−1 is computable
by a sum of (k− 1) ROABPs of width at most w(w + 1) < (w + 1)2, by taking the sum of (k− 1)
ROABPs computing ∑w+1

i=1 αi · Pn|s=ai and projecting further to obtain Pn−t−1. But the inductive
hypothesis then forces

n− log2(w + 1)− 1 ≤
(

log2(w + 1)2
)
+ log2

((
(w + 1)2)2

)
+ · · · log2

((
(w + 1)2k−2

)2
)
+ (k− 1)

=⇒ n ≤ log2(w + 1) + log2(w + 1)2 + log2(w + 1)22
+ · · · log2(w + 1)2k−1

+ k

≤ 4k · log2(w + 1) + k.

Thus, w ≥ exp(Ω(
√

n/2k)) as claimed.
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4 Lower bounds for read-k oblivious ABPs

In this section we show an explicit polynomial that has a polynomial-size depth-3 multilinear
circuit and yet cannot be computed efficiently by a read-k oblivious ABP. To accomplish this we
first demonstrate a polynomial that as large evaluation dimension even when a small fraction of
the variables are fixed. We then argue that every polynomial computed by a read-k oblivious
ABP has a small fraction of variables that when fixed result in polynomial with small evaluation
dimension. Combined these two fact provided an exponential lower bound for read-k oblivious
ABPs, when k is bounded.

4.1 An explicit polynomial with large evaluation dimension

Raz and Yehudayoff [RY09] constructed an explicit multilinear polynomial f (x) with evaluation
dimension as high as possible with respect to any partition y, y of the variables x. Our require-
ments are slightly different, as we need a “robustness” property, namely, we argue that the evalu-
ation dimension of the polynomial remains high even when we fix a small constant fraction, say,
1/10, of the variables. Our construction is inspired by a recent similar construction of Kayal, Nair
and Saha [KNS16].

Consider the complete bipartite graph Kn,n with n vertices on each side. We shall label the
left vertices as x1, . . . , xn and the right vertices as y1, · · · , yn. We can write Kn,n as a union of n
edge-disjoint perfect matchings M1 ∪ · · · ∪Mn, where for every i ∈ [n], Mi contains all edges of
the form (xj, y(j+i mod n)+1) for j ∈ [n]. Define the polynomial Qn as

Qn(x1, . . . , xn, y1, . . . , yn, z1, . . . , zn) =
n

∑
i=1

zi ∏
(j,k)∈Mi

(xj + yk) =
n

∑
i=1

zi

n

∏
j=1

(xj + y(j+i mod n)+1). (4.1)

By its definition, it is clear that Qn is computed by a depth-3 polynomial-size circuit. We now
show that even if we fix a small fraction of the variables in x ∪ y, Qn retains a large evaluation
dimension with respect to any partition of the variables we have not fixed.

Lemma 4.2. Let s, t be two disjoint subsets of x ∪ y such that |s t t| ≥ 0.9 · 2n. Let r = x ∪ y \ (s ∪ t).
Then,

evalDims,t;r(Qn) ≥ exp(Ω(min(|s|, |t|))).

Proof. Assume without loss of generality that |s| ≤ |t|, and that sL := s ∩ x satisfies |sL| ≥ |s|/2.
Since (s ∪ t) ∩ y ≥ 0.8n, |tR| = |t ∩ y| ≥ (0.8n− |s|/2) ≥ 0.3n. Thus, there are at least |sL| · |tR| =
Ω(n · |s|) edges between s and t in Kn,n. By averaging, some matching Mi must include at least
t = Ω(|s|) of these edges. Consider the polynomial fi = ∏(j,k)∈Mi

(xj + yk). For every edge
(j, k) ∈ Mi that does not go between s and t, if either of the variables belong to s we can further
restrict them to 0/1 values as to preserve the non-zeroness of the polynomial (xj + yk). Let the
resulting polynomial be hi, and note that it cannot have greater evaluation dimension than fi.
Hence, we can write

hi =
`

∏
m=1

(sm + tm) · g(w),

where for every m ∈ [`] we have that sm ∈ s, tm ∈ t, and g(w) is a polynomial that does not
contain any variables of s. Here we have “pushed” into g all the factors of fi that correspond to
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edges in the matching Mi that do not go between s and t. This means that w is the union of r and
the variables in t that are not matched with variables in s by Mi.

By Lemma 2.4, evalDims,t;r( fi) ≥ evalDimu,vtw(hi) ≥ 2` = 2Ω(|s|). Since fi is a projection
of Qn, achieved by setting zi = 1 and zj = 0 for all j 6= i, it follows that evalDims,t;r(Qn) ≥
evalDims,t;r( fi) ≥ exp (Ω(|s|)). As we assumed |s| ≤ |t|, the lemma follows.

We note that the difference between the above polynomial Qn and the one constructed by
Kayal, Nair and Saha ([KNS16]) is that they use a 3-regular bipartite expander instead of Kn,n.
This is important in their setting because the degree of the graph corresponds to the number of
matchings, and this is the top fan-in of the depth-3 circuit computing the polynomial. In fact, in
order to show hardness for read-k oblivious ABPs it is also possible to use a good enough bipartite
expander (with a constant degree d that depends only on k) whose expansion property guarantees
that a proof strategy along the lines of Lemma 4.2 and Theorem 4.4 would work. This would have
allowed us to present a hard polynomial which is computed by a depth-3 circuit with bounded
top fan-in, however, this very small gain would have come at the cost of increasing the complexity
of the construction and making it depend on k.

4.2 Upper bound on evaluation dimension for read-k oblivious ABPs

In this section we show that if f is computed by a read-k oblivious ABP of width w, then we
can fix a “small” subset of variables such that the remaining variables can be partitioned into
two carefully chosen “large” subsets, under which the evaluation dimension is at most w2k. We
then apply this result to the polynomial Qn (from (4.1)) and use Lemma 4.2 to show that if Qn is
computed by a width-w read-k oblivious ABP, then w ≥ exp(n/kO(k)).

Theorem 4.3. Let f ∈ F[x] be a polynomial computed by a width-w read-k oblivious ABP. Then, there
exist a partition of x = u t v t z, such that

1. |u|, |v| ≥ |x|/kO(k),

2. |z| ≤ |x|/10, and

3. evalDimu,v;z( f ) ≤ w2k.

Proof. Consider an ABP A that computes f . Divide the k|x| layers into r equal-sized contiguous
blocks of k|x|/r layers (where r shall be set shortly). For each variable, consider the (at most) k
blocks that its k reads fall in (if the number of such blocks is strictly smaller than k, we can fill up
to k blocks arbitrarily). By a simple averaging, there must exist k blocks B1, . . . , Bk that contain all k
reads of a set u of at least |x|/(r

k) variables. Let z be the set of variables in B1 ∪ B2 ∪ · · · ∪ Bk that are
not in u, and v be the set of all remaining variables. As each block is of size k|x|/r, we have that
|z| ≤ k2|x|/r, which is at most |x|/10 if we set r = 10k2. Observe that |v| ≥ |x| − k2|x|/r ≥ 9n/10
and |u| ≥ n/(10k2

k ) ≥ |x|/kO(k). Let us ignore the variables in z by considering the ABP over the
field F(z).

We now claim that evalDimu,v;z( f ) ≤ w2k. Having moved the variables in z to the field, each
of the r blocks is either entirely contained in u or entirely contained in v. Therefore, since the
reads comprise of at most k alternating blocks of variables in u and v, the resulting branching
program has the k-gap property with respect to u. It follows immediately from Lemma 2.9 that
evalDimu,v;z( f ) is at most w2k.
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We now show that Qn (defined in (4.1)) is hard for read-k oblivious ABPs to compute.

Theorem 4.4 (Restatement of Theorem 1.5). Let A be a width-w, read-k oblivious ABP computing the
polynomial Qn (defined in (4.1)). Then w ≥ exp(n/kO(k)).

Proof. First observe that we can eliminate the z variables by considering the ABP over the field
F(z) so that it now computes a polynomial in the variables x ∪ y. By Theorem 4.3, there exists
a partition u t v t z of x ∪ y with the prescribed sizes as in the statement of the theorem, such
that evalDimu,v;z(Qn) ≤ w2k. Since |z| ≤ 2n/10, Lemma 4.2 implies that evalDimu,v;z( f ) =
exp(Ω(min(|u|, |v|))). Using the fact that min(|u|, |v|) ≥ n/kO(k), we get that w2k ≥ exp(n/kO(k)),
which implies w ≥ exp(n/kO(k)) as well.

5 Identity tests for read-k oblivious ABPs

In this section we give PIT algorithms for the class of read-k oblivious ABPs. Our algorithms are
based on the following theorem that efficiently constructs small hitting sets for read-once ABPs.

Theorem 5.1 (Hitting Set for ROABPs, [AGKS15]). There exists a hitting setH for the class of n-variate
polynomials computed by width-w individual-degree-d ROABPs of size (nwd)O(log n), in any variable or-
der. H can be constructed in time poly(|H|).

5.1 Identity tests for k-pass ABPs

First, observe that Lemma 2.5 immediately implies a black-box algorithm for the subclass of k-pass
ABPs, as they can be simulated efficiently by a ROABP and then tested using Theorem 5.1.

Corollary 5.2. There is a hitting set of size (ndw)O(k log n) for the class of n-variate k-pass ABPs of width
w and degree d.

Proof. Follows directly from Lemma 2.5 and the (ndw′)O(log n)-sized hitting set for width w′ read-
once ABPs from Theorem 5.1.

We now turn to general read-k oblivious ABPs.

5.2 From read-k to per-read-monotone and regularly-interleaving sequences

In this section we show that given any read-k oblivious ABP over x = {x1, . . . , xn} computing a
polynomial f , we can find a “large” subset of variables y ⊆ x such that f has a “small” ROABP
when we think of f as a polynomial in the y variables over the field F(y). This process, in fact,
involves only finding the correct subset y (without rewiring any part of the ABP). Therefore, in
order to avoid technical overhead it is useful to think in terms of sequences over abstract sets of
elements, which correspond to the order in which the ABP reads the variables, and not in terms
of variables in branching programs.

Let X be a set, and let n = |X|. Let S ∈ Xm be a sequence of m elements from X. We say S is
read-k if each element x ∈ X occurs k times in S (in this case we also have m = nk). As mentioned in
Remark 1.3, we restrict ourselves to considering sequences that are read-k for some k. For i ∈ [k],
we denote by S(i) the subsequence of S which consists of the i-th occurrences of elements in X.
That is, S(i) is a permutation of the elements of X, according to the order in which they appear in S
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for the i-th time. Similarly, for i 6= j ∈ [k], we use the notation S(i,j) for the subsequence of S which
consists of the i-th and j-th occurrences of elements in X. We use rev(S) to denote the sequence S
in reverse order.

For x ∈ X and i ∈ [k] let Occuri
S(x) denote the index of the i-th occurrence of x in S. For an

index ` ∈ [kn] let VarS(`) denote the pair (xi, c) such that the c-th occurrence of xi appears at index
` in S. For a subset X′ ⊆ X, let S|X′ denote the restriction of S to the set X′ that is the result of
dropping all elements of X \ X′ from S. Thus, S|X′ ∈ (X′)m′ for m′ = |X′|k.

Next we define a special subclass of read-k sequences where the elements are read in either
increasing or decreasing order relative to the subsequence of first occurrences.
Definition 5.3. Let S ∈ Xnk be a read-k sequence. We say S is per-read-monotone if for every i ∈ [k], S(i)

is either monotonically increasing, i.e., S(i) = S(1), or monotonically decreasing, i.e., S(i) = rev(S(1)). ♦

Observe that read-once sequences are naturally per-read-monotone and monotonically in-
creasing. It is often convenient to assume that S(1) = (x1, . . . , xn), that is, that the elements of
X are labeled according to the order of their first occurrences. This can be ensured without loss of
generality by renaming elements.

The following well-known theorem asserts that any long enough sequence contains a large
monotone subsequence:

Theorem 5.4 (Erdős–Szekeres Theorem, [ES35, AZ04]). Let m be a positive integer. Let S be a sequence
of distinct integers of length at least m2 + 1. Then, there exists a monotonically increasing subsequence of
S of length m + 1, or a monotonically decreasing subsequence of S of length m + 1.

As an immediate corollary of Theorem 5.4, we get the following lemma:

Lemma 5.5. Let S be a read-2 sequence over X = {x1, . . . , xn}. Then, there exists a subset X′ ⊆ X
with |X′| ≥

√
n such that the subsequence S′ = S|X′ is per-read-monotone. The subsequence S′ can be

constructed in time poly(n, k).

Proof. We want to show that there is a long subsequence in S(2) that is monotone with respect to
the ordering of S(1). By Theorem 5.4, there exists such a monotonic subsequence of S(2) of length
m + 1 where m = b

√
n− 1c. It follows that this subsequence is of length at least

√
n. Let X′ ⊆ X

be the set of elements that appear in this monotonic subsequence, and let S′ = S|X′ . Then by the
choice of X′, it follows that S′ is per-read-monotone. The subsequence S′ can be constructed in
polynomial time using standard dynamic programming techniques.

We can generalize Lemma 5.5 to read-k sequences, at the cost of settling for a weaker lower
bound of n1/2k−1

on the length of the subsequence:

Lemma 5.6. Let S be a read-k sequence over X = {x1, . . . , xn}. Then, there exists a subset X′ ⊆ X with
|X′| ≥ n1/2k−1

such that the subsequence S′ = S|X′ is per-read-monotone. The subsequence S′ can be
constructed in time poly(n, k).

Proof. As in the proof of Lemma 5.5, the set X′ can be constructed by repeatedly pruning X using
k− 1 repeated applications of Theorem 5.4.

That is, we first apply Theorem 5.4 on the subsequence S(2) of second occurrences and obtain a
monotonic subsequence of length n2 := d

√
ne. We discard all elements of X which do not appear

in this monotonic subsequence. We move on to the subsequence S(3) of third occurrences, and find
a monotonic subsequence of length n3 := d√n2e, again discarding all elements that do not appear
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in this subsequence. After finding the k-th monotonic subsequence, we are left with a subset X′ of
size at least n1/2k−1

that satisfies the conditions of the lemma.

We now show how to prune per-read-monotone read-2 sequences even further, trading a con-
stant fraction of their size for stronger structural properties. We begin by stating the property we
look for.
Definition 5.7. Let S be a read-2 sequence over a set of elements X. We say S is 2-regularly-interleaving
if there exists a partition of X to blocks {Xi}i∈[t] such that for every i ∈ [t]:

• For every c ∈ {1, 2}, all the c-th occurrences of the block Xi appear consecutively in S.

• The interval containing the second occurrences of the block Xi immediately follows the interval con-
taining the first occurrences of Xi.

A read-k sequence S is said to be k-regularly-interleaving if for any i 6= j ∈ [k], the subsequence S(i,j)

is 2-regularly-interleaving. That is, S is k-regularly-interleaving if restricted to any two reads it is 2-
regularly-interleaving. ♦

To get an intuitive sense of this definition, the reader may consult Figure 3.

1st occurrences of X1

2nd occurrences of X1

1st occurrences of X2

2nd occurrences of X2

· · ·

1st occurrences of Xt

2nd occurrences of Xt

Figure 3: A 2-regularly-interleaving sequence.

The following lemma is used to simplify some of the later arguments. It shows that in a read-k
per-read-monotone sequence, the monotonically increasing subsequences cannot intersect with
monotonically decreasing subsequences.

Lemma 5.8. Let S be a read-k, per-read-monotone sequence over X = {x1, . . . , xn}. We can write S as a
concatenation S = (T1, T2, . . . , Tt), such that:

1. for every j ∈ [t], Tj is a read-k j sequence for k j ≤ k.

2. for every i ∈ [k] there exists j ∈ [t] so that S(i) is contained in Tj.

3. for every odd j ∈ [t], all the subsequences S(i) that appear in Tj are monotonically increasing, and for
any even j, all are monotonically decreasing.

4. for every j ∈ [t− 1], the last element that appears in Tj equals the first element appearing in Tj+1,
and this element can be either the last element of S(1), if Tj contains monotonically increasing subse-
quences and Tj+1 contains monotonically decreasing subsequences, or the first element of S(1), in the
opposite case.
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In other words, we can partition S into t disjoint contiguous subsequences, such that every S(i) is completely
contained in exactly one subsequence, and in every subsequence, either all reads are increasing or all reads
are decreasing, with the pattern alternating.

Proof. The proof is by induction on k. For k = 1, S = S(1) and this is a trivial statement. Assume
without loss of generality that S(1) = (x1, x2, . . . , xn).

For larger values of k, we first show that no decreasing sequence can intersect an increasing
one. Consider any i, j ∈ [k] with i < j. Suppose S(i) is monotonically increasing and S(j) is
monotonically decreasing. Since S is per-read-monotone, S(i) = S(1) and S(j) = rev(S(1)). This
implies that

Occuri
S(x1) < · · · < Occuri

S(xn) < Occurj
S(xn) < · · · < Occurj

S(x1),

because i < j and so the ith occurrence of xn must come before its jth occurrence. We conclude
that S(i) and S(j) cannot intersect. The other case, where S(i) is decreasing and S(j) is increasing, is
handled analogously.

Let ` denote the first index in which a decreasing subsequence S(i) begins (if no such ` exists,
the lemma is clearly satisfied by picking T1 = S). By the above argument, all the elements before
the `-th index must belong to increasing subsequences which are read entirely. We can define
T1 to be the subsequence of S from index 1 up to index ` − 1, and continue inductively on the
subsequence S′ of S from index ` to the end, which has k′ < k reads, to construct the remainder of
the Tj’s in accordance with the statement of the lemma.

As for item 4, it follows from the fact that a sequence of monotonically increasing subsequences
must end in xn (as to maintain monotonicity), and a sequence of monotonically decreasing subse-
quences must begin with xn for the same reason. The opposite case is handled analogously.

The following lemma shows that given a 2-read per-read-monotone sequence, we can find a
large subsequence which is also 2-regularly interleaving.

Lemma 5.9. Let S be a read-2 per-read-monotone sequence over X. Then there is a subset X′ ⊆ X with
|X′| ≥ n/3 such that the sequence S′ = S|X′ is per-read-monotone and 2-regularly-interleaving.

Proof. We show how to erase the occurrences of (not too many) elements from S, such that the
remaining sequence is 2-regularly-interleaving and maintains its per-read-monotonicity property.

First observe that if the subsequence S(2) of second occurrences is monotonically decreasing,
then, by Lemma 5.8, S is already also 2-regularly-interleaving. In this case we have S = (S(1), S(2)) =
(S(1), rev(S(1))) and we can pick just one block, X, and satisfy the definition.

From now on we assume then that S(2) is monotonically increasing. For every z ∈ X, denote
by dz = Occur2

S(z)−Occur1
S(z) the distance between the first and the second occurrence of z in

S. Pick x ∈ X such that dx is maximal and let r := dx. By averaging, among the r occurrences
between Occur1

S(x) and Occur2
S(x), there exist either r/2 first occurrences or r/2 second occur-

rences. Assume there are at least r/2 first occurrences in this interval (the other case is handled in
an analogous way), and let A be the set of variables (including x) whose first occurrence appears
between the Occur1

S(x) and Occur2
S(x), so that |A| ≥ r/2.

Since S(2) is monotonically increasing, for every z ∈ A it holds that Occur2
S(z) > Occur2

S(x).
Let y ∈ A be the element such that Occur2

S(y) is maximal. Observe that

Occur2
S(y)−Occur2

S(x) ≤ Occur2
S(y)−Occur1

S(y) ≤ r,
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where the first inequality follows from the fact that S is per-read-monotone and the second follows
from the choice of x. Hence, it follows that

Occur2
S(y)−Occur1

S(x) ≤ 2r. (5.10)

We now erase from S all the elements that appear in the interval [Occur1
S(x), Occur2

S(y)] but do
not appear in A. Having done that, the subsequence in this interval satisfies the requirements of
the lemma (one can relabel the elements if necessary in order to ensure contiguous indexing in this
subsequence). See Figure 4 for a diagram of this. Furthermore, we have kept at least |A| ≥ r/2
elements alive. By (5.10), we have erased at most r elements.

x xy y

1st occurrences 2nd occurrences

Figure 4: The construction of A. Elements of A are marked by a vertical hash. All other elements in the black interval
are discarded. The process then continues inductively on the gray subsequences.

We continue this process recursively on the subsequences in both of the intervals [1, Occur1
S(x)−

1] and [Occur2
S(y) + 1, 2|X|]. Observe that these intervals cannot share any element, as that would

mean that the two occurrences of this element are of distance more than r apart, which contradicts
the choice of x. Hence, we may continue independently on both subintervals. Let X′ ⊆ X be the
set of elements that stay alive throughout this process (this is exactly the union of the sets A). By
induction, |X′| ≥ |X|/3, because for each element that is kept alive in A we erase at most two
elements from the sequence. The statement of the lemma follows.

Viewed as an algorithm, the proof of Lemma 5.9 is a procedure that, given a per-read-monotone
sequence S over X, decides which elements of X should be erased in order to be left with a 2-
regular-interleaving sequence S′ = S|X′ . It can also be noted that both properties of being per-
read monotone and being 2-regularly interleaving are downward-closed, in the sense that for any
subset X′′ ⊆ X′, the subsequence S′′ = S′|X′′ maintains both properties. Hence, if we are given a
read-k per-read-monotone sequence S, by repeatedly applying the algorithmic of Lemma 5.9 sep-
arately on each subsequence S(i,j) for i 6= j ∈ [k] (maintaining a constant fraction of the elements
on each application), we get the following corollary:
Corollary 5.11. Let S be a read-k per-read-monotone sequence over X = {x1, . . . , xn}. Then there is a
subset X′ ⊆ X with |X′| ≥ n/3k2

such that the sequence S′ = S|X′ is per-read-monotone and k-regularly-
interleaving.

5.3 ROABPs for regularly interleaving sequences

In this section we show that if a polynomial f is computed by a small-width read-k oblivious ABP
A such that the sequence S of the reads in A is per-read-monotone and k-regularly-interleaving,
then f can in fact also be computed by a small-width ROABP A′ (in the same order as S(1)). We
show this by proving that A has the k-gap property with respect to that order, and then applying
Lemma 2.9.
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Lemma 5.12. Let f ∈ F[x1, . . . , xn] be computed by a read-k oblivious ABP A of width w, and let S be
the sequence of variables read by A. Suppose further that S is per-read-monotone with respect to the order
x1 < x2 < · · · < xn and k-regularly-interleaving. Then A has the k-gap property.

In the proof of Lemma 5.12 we use the following lemma in order to bound the number of
“gaps” one obtains for any prefix.

Lemma 5.13. Let S be a read-k, per-read-monotone, k-regularly-interleaving sequence over X = {x1, . . . , xn}.
Let ` ∈ [kn] be an integer and suppose that VarS(`) = (xi, c) and VarS(`+ 1) = (xj, d).3

• Suppose that for every m ∈ [k], S(m) = (x1, x2, . . . , xn) and j > i, then j = i + 1.

• Suppose that for every m ∈ [k], S(m) = (xn, xn−1, . . . , x1) and i > j, then i = j + 1.

Proof. We argue only the first conclusion, as the second follows by a symmetric argument.
Observe that if c = d the claim is true by monotonicity of S(c). If c 6= d, consider the sub-

sequence S(c,d). Since S is k-regularly interleaving, S(c,d) is 2-regularly interleaving, and in this
sequence it also holds that xj immediately follows xi. Furthermore, we have that d < c, as oth-
erwise Occurc

S(xj) < Occurd
S(xj) = Occurc

S(xi) + 1 implies that Occurc
S(xj) < Occurc

S(xi), which
contradicts the monotonicity of S(c), as we assumed that j > i. Hence, in S(c,d) d plays the role of
the first read, and c plays the role of the second read.

Since S(c,d) is a 2-regularly-interleaving sequence and per-read monotonically increasing, the
blocks in Definition 5.7 at not just sets but are contiguous sequences of variables

X1 = (x1, x2, . . . , xi1), X2 = (xi1+1, xi1+2, . . . , xi2), . . . , Xt = (xit−1+1, . . . , xn).

such that
S(c,d) = (X1, X1, X2, X2, . . . , Xt, Xt).

Suppose that xi belongs to Xbi and xj belongs to Xbj . Recall that the lemma assumes that the
first read of xj immediately follows the second read of xi in S(c,d). Hence, xi is at the end of the
second read of the block Xbi and xj is at the beginning of the first read of the block Xbj . This implies
that bj = bi + 1 and hence that j = i + 1.

We are now ready to prove Lemma 5.12.

Proof of Lemma 5.12. Let S be the sequence of reads in A. Let i ∈ [n] and a ∈ Fi. By applying
Lemma 2.1 and fixing x[i] = a, we can write

f |x[i]=a =
(

N1(a) ·M1(xi+1, . . . , xn) · N2(a) ·M2(xi+1, . . . , xn)

· · · Nt(a) ·Mt(xi+1, . . . , xn)
)

1,1
. (5.14)

for some integer q, where for each σ ∈ [q], Nσ is a product of univariate matrices of layers that
read {x1, . . . , xi}, and Mσ is a product of univariate matrices of layers that read {xi+1, . . . , xn}. We
wish to show that q ≤ k which implies A has the k-gap property.

For each Mσ we define its interface to be the pair (`σ, rσ), which are, respectively, the indexes
of the first and last layers of A that define Mσ. Thus `σ − 1 is the last layer that this part of Nσ
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f |x1=a1,x2=a2 =
(

N1(a1, a2)M1(x3, x4)N2(a1, a2)M2(x3, x4)
)
(1,1)

x1 x2 x3 x4 x1 x2 x1 x2 x3 x4 x3 x4

↑
`1

↑
r1

↑
`2

↑
r2

Figure 5: The ABP reads the variables in the order that appears in the box. For i = 2, the locations of both interfaces are
marked.

and rσ + 1 is the first layer that is part of Nσ+1 (when it exists). See Figure 5 for a diagram of this
notation.

We apply Lemma 5.8 to rewrite S as (T1, T2, . . . , Tt). Consider any Tj for j ∈ [t], and two case
based on the third property of Lemma 5.8.

Consider the case when j is odd, then all occurrence subsequences in Tj are monotonically
increasing. Consider the representation (5.14) and the left side of interfaces (`σ, rσ) that lie in
Tj. Let us denote VarS(`σ − 1) = (xσ1 , c) and VarS(`σ) = (xσ2 , d). Note that since i ≥ 1 and Tj
begins with x1, by the fourth property of Lemma 5.8, it is the case that both `σ and `σ − 1 lie
in Tj. Furthermore, since we are considering the left side of interfaces, it must be the case that
σ1 ≤ i < σ2. By the first property of Lemma 5.13, we must have σ2 = σ1 + 1, and thus σ1 = i and
σ2 = i + 1. Hence, we can map each left side of an interface in Tj to a unique occurrence of xi in Tj.

Now consider the case when j is even, then all occurrence subsequences in Tj are monoton-
ically decreasing. By an argument symmetric to the one above, and using the second property
of Lemma 5.13 instead of the first, we can map each right side of an interface in Tj to a unique
occurrence of xi in Tj.

Observe that by the third and fourth properties of Lemma 5.8 and above discussion of left and
right side of interfaces we have: For every σ ∈ [q], Mσ has either the layer preceding it or the layer
succeeding it labeled by xi. Since S is a read-k sequence and xi occurs k times, q ≤ k. We conclude
that A has the k-gap property.

It now immediately follows that any read-k oblivious ABP the reads the variables in a per-read-
monotone and k-regularly-interleaving fashion can be simulated by a small ROABP. We record this
fact in the following corollary.

Corollary 5.15. Let f ∈ F[x1, . . . , xn] be computed by a read-k oblivious ABP A of width w, and let S be
the sequence of variables read by A. Suppose further that S is per-read-monotone with respect to the order
x1 < x2 < · · · < xn and k-regularly-interleaving. Then for any i ∈ [n], evalDimx[i],x[i]( f ) ≤ w2k. In
particular, f is computed by a ROABP of width at most w2k in the variable order x1, x2, . . . , xn.

Proof. Immediate from Lemma 5.12 and Lemma 2.9.

5.4 Identity testing for read-k oblivious ABPs

In this section we give our white-box identity testing algorithm for read-k oblivious ABPs. Before
giving the proof, let us first give an overview of the algorithm for the slightly simpler read-2 case.

3Recall that VarS(`) = (xi, c) means that the `-th element in S is xi, and this is its c-th occurrence.

25



Given a read-2 oblivious ABP A with read sequence S which computes a polynomial f ∈
F[x1, . . . , xn], Lemma 5.9 shows how to find a read-2 subsequence on a set y = {y1, . . . , y√n} of
roughly

√
n variables. When we think of f as a polynomial in the y variables over the field F(y),

Corollary 5.15 allows us compute f with a small ROABP. We can then use a hitting set for ROABPs
in order to find an assignment (from F) to the y variables that keeps the polynomial f non-zero.
Having done that, we are left with a non-zero polynomial over a smaller set of n−

√
n variables,

which is again computed by a read-2 oblivious ABP, so we may repeat this process. After at most
O(
√

n) iterations we find an assignment for all the variables that keeps the polynomial non-zero.
We note that a very similar “hybrid argument” that uses a hitting set for ROABPs appears both in
[AGKS15] and [OSV15]. The argument for read-k is identical, apart from the loss in the parameters
incurred by Corollary 5.11.

Our PIT algorithm is presented in Algorithm 1.

Algorithm 1 : PIT for read-k oblivious ABPs

Input: a read-k sequence S on n variables, degree d and width w as integers, and a field F.
Output: a hitting set H for read-k ABPs of degree d and width w over F that read n variables in

the order S.
1: x = {x1, . . . , xn}, i = 1
2: while x 6= ∅ do
3: Pick a subset yi ⊆ x of size at least |x|1/2k−1

/3k2
, such that the subsequence that reads only

the yi variables is per-read-monotone and k-regularly-interleaving, using Lemma 5.6 (and
Corollary 5.11).

4: Construct a set Hi ⊆ F|yi | of size (nw2kd)O(log n) that hits ROABPs of width w2k in the yi
variables, using Theorem 5.1.

5: x← x \ yi, i← i + 1
6: end while
7: t = i− 1
8: return the setH = Hy1

1 × · · · ×H
yt
t .

We now argue that the set H produced by Algorithm 1 is a hitting set, and bound its size and
construction time.

Theorem 5.16. There is a white-box polynomial identity test for read-k oblivious ABPs of width w and

degree d on n variables that runs in time poly(n, w, d)n1−1/2k−1
exp(k2)polylog(n). Furthermore, given only

the order in which the variables are read, we can construct a hitting set for such ABPs that read their

variables in this order, of size poly(n, w, d)n1−1/2k−1
exp(k2)polylog(n).

Proof. Suppose k = 1, in this case we can immediately apply Theorem 5.1 to get an appropriate
hitting set. Now suppose k > 1, and consider Algorithm 1. We first show that the set H it returns
hits A, and then we bound the size ofH.

By Corollary 5.15, the polynomial f in the y1 variables is computed by a width-w2k ROABP
over the field F(y1). Hence, by Theorem 5.1, there exists a1 ∈ H1 such that f (a1) is non-zero
over F(y1). Similarly, we can now find a2 ∈ H2 and assign it to the y2 variables and keep the
polynomial non-zero, etc. all the way up to at. It follows, by induction, that (a1, . . . , at) is an
assignment from F to all the variables such that f (a1, . . . , at) is non-zero, as required.
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Furthermore, for all i ∈ [t], |Hi| = (nw2kd)O(log n), so, |H| = ((nw2kd)O(log n))t. We now bound
the number of iterations t. Let T(n) denote the number of iterations needed for n variables. We
show, by induction on n, that

T(n) ≤ cn1−1/2k−1
,

for some c = c(k) which will be set in a moment. This will imply the desired bound onH.
Set p = 1/2k−1. After the first iteration, the number of variables we are left with is n′ :=

n− np/3k2
variables. By the induction hypothesis, we may assume that T(n′) ≤ c · (n′)1−p. Hence

T(n) ≤ 1 + T(n′) ≤ 1 + c(n′)1−p = 1 + c ·
(

n− np

3k2

)1−p

and we wish to show that

1 + c
(

n− np

3k2

)1−p

≤ cn1−p.

This is equivalent to
1
c
≤ n1−p −

(
n− np

3k2

)1−p

,

This is satisfied as long as
1− p

3k2 ≥
1
c

(see Lemma A.1 in the appendix for a proof of this fact), which we can ensure by picking c = 2 · 3k2
,

as k > 1 implies that p ≤ 1/2.
Finally, since finding the set yi on each iteration can be done in polynomial time, the running

time of the algorithm is dominated by the time required to constructH, which is poly(|H|).

6 Conclusions and Open Problems

In this work, we have obtained the first non-trivial lower bounds and identity testing algorithms
for read-k oblivious ABPs. We briefly mention some directions that we find worth pursuing in
future research.

The most natural open problem we pose is designing an identity testing algorithm for read-k
oblivious ABPs with better running time than the algorithm we presented in this paper. Since for
ROABPs (the k = 1 case) there exist a white-box polynomial time and black-box quasipolynomial-
time algorithms, it seems reasonable to hope that the deterioration in the parameters would not
be as sharp when k > 1 (the flip side of this argument, however, is the relative lack of progress in
the analogous question in the boolean domain).

Another open problem is obtaining a completely black-box test for read-k oblivious ABPs in
any variable order, that is, without knowing the order in which the variable appear. As we men-
tioned, for ROABPs there exist a black-box hitting set that works for any variable order [AGKS15],
whose size is essentially the same as that of the hitting set that was obtained earlier for the known-
order case [FS13b]. In our construction, we need to know the order so that we can pick the
per-read-monotone and k-regularly-interleaving sequences to which we assign the hitting sets
for ROABPs, and simply “guessing” those sets would require exponential time. Still, given the
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progress in obtaining hitting sets in any order for ROABPs, it might be the case that such a con-
struction could follow from our strategy, even using known techniques.

Finally, we turn back to boolean complexity, and ask whether our ideas and techniques can
be adapted to attack the problem of constructing pseudorandom generators for read-k oblivious
boolean branching program with sublinear seed length.
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A Lemma A.1

Lemma A.1. Let p be a real number such that 0 < p < 1 and r be a positive integer. For any n ∈N,

n1−p − (n− np/r)1−p ≥ (1− p)/r.

Proof. Define f : R+ → R+ by f (x) = x1−p − (x − xp/r)1−p. We show that this real function
is non-increasing for non-negative x, and that its limit as x tends to infinity is (1− p)/r, which
implies the statement of the lemma.

To show that f is non-increasing, we show that its derivative is non-positive. Note that

f ′(x) = (1− p)x−p − (1− p)
(

1− pxp−1

r

)(
x− xp

r

)−p

.

To show that f ′(x) ≤ 0 for all x, it thus suffices, after some rearrangements, to prove the inequality(
x− xp

r

)p

≤ xp
(

1− pxp−1

r

)
. (A.2)

We have that (
x− xp

r

)p

= xp
(

1− xp−1

r

)p

,

and thus after dividing by xp, (A.2) follows as a corollary of the well-known inequality (1− y)s ≤
1− sy for y > 0 and 0 < s < 1, that can be proved using the Taylor expansion of (1− y)s around
0.

In order to calculate the limit, observe that,

f (x) = x1−p ·
(

1−
(

1− xp−1

r

)1−p)
=

1−
(

1− xp−1

r

)1−p

xp−1 ,

so by L’Hôpital’s Rule we get that

lim
x→∞

1−
(

1− xp−1

r

)1−p

xp−1 = lim
x→∞

−(p−1)2

r · xp−2 ·
(

1− xp−1

r

)−p

(p− 1)xp−2 =
1− p

r
.
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