EFFICIENTLY DECODING REED MULLER CODES FROM RANDOM ERRORS

Ben Lee Volk

Joint work with Ramprasad Saptharishi Amir Shpilka Tel Aviv University

Given the truth-table of a polynomial $f \in \mathbb{F}[x_1, ..., x_m]$ of degree $\leq r$, with 1/2 - o(1) of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

Adversarial Errors: Impossible.

Given the truth-table of a polynomial $f \in \mathbb{F}[x_1, ..., x_m]$ of degree $\leq r$, with 1/2 - o(1) of the entries flipped, recover f efficiently.

Adversarial Errors: Impossible. Random Errors?

(each coordinate flipped independently with probability 1/2 - o(1))

Given the truth-table of a polynomial $f \in \mathbb{F}[x_1, ..., x_m]$ of degree $\leq r$, with 1/2 - o(1) of the entries flipped, recover f efficiently.

Adversarial Errors: Impossible. Random Errors?

(each coordinate flipped independently with probability 1/2 - o(1))

Theorem: There is an efficient algorithm to recover f, even for $r = o(\sqrt{m})$.

Given the truth-table of a polynomial $f \in \mathbb{F}[x_1, ..., x_m]$ of degree $\leq r$, with 1/2 - o(1) of the entries flipped, recover f efficiently.

Adversarial Errors: Impossible. Random Errors?

(each coordinate flipped independently with probability 1/2 - o(1))

Theorem: There is an efficient algorithm to recover f, even for $r = o(\sqrt{m})$.

This talk is about decoding **Reed-Muller codes** from **random** errors.

• **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3 x_4$$

A linear code, with

• Block Length: $2^m := n$

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3 x_4$$

- Block Length: $2^m := n$
- **Distance:** 2^{m-r} (lightest codeword: $x_1x_2\cdots x_r$)

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3 x_4$$

- Block Length: $2^m := n$
- **Distance:** 2^{m-r} (lightest codeword: $x_1x_2\cdots x_r$)
- Dimension: $\binom{m}{0} + \binom{m}{1} + \dots + \binom{m}{r} := \binom{m}{\leq r}$

- **Messages:** (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_2[x_1, \dots, x_m]$
- Encoding: evaluations over \mathbb{F}_2^m

$$f(x_1, x_2, x_3, x_4) = x_1 x_2 + x_3 x_4$$

- Block Length: $2^m := n$
- **Distance:** 2^{m-r} (lightest codeword: $x_1x_2\cdots x_r$)
- Dimension: $\binom{m}{0} + \binom{m}{1} + \dots + \binom{m}{r} := \binom{m}{\leq r}$
- Rate: dimension/block length = $\binom{m}{< r}/2^m$

Generator Matrix: evaluation matrix of deg $\leq r$ monomials:

Generator Matrix: evaluation matrix of deg $\leq r$ monomials:

(Every codeword is spanned by the rows.)

Generator Matrix: evaluation matrix of $deg \leq r$ monomials:

$$\mathbf{v} \in \mathbb{F}_{2}^{m}$$

$$M \cdots \left(\cdots \rightarrow M(\mathbf{v}) \right) := E(m, r)$$

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their **parity check matrix**: a matrix H whose kernel is the code.

Generator Matrix: evaluation matrix of deg $\leq r$ monomials:

$$\mathbf{v} \in \mathbb{F}_{2}^{m}$$

$$M \cdots \left(\cdots \rightarrow M(\mathbf{v}) \right) := E(m, r)$$

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their **parity check matrix**: a matrix H whose kernel is the code.

Duality: $RM(m, r)^{\perp} = RM(m, m - r - 1).$

Generator Matrix: evaluation matrix of $deg \leq r$ monomials:

$$\mathbf{v} \in \mathbb{F}_{2}^{m}$$

$$M \cdots \left(\cdots \rightarrow M(\mathbf{v}) \right) := E(m, r)$$

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their **parity check matrix**: a matrix H whose kernel is the code.

Duality: $RM(m, r)^{\perp} = RM(m, m - r - 1).$ \implies parity check matrix of RM(m, r) is E(m, m - r - 1).

DECODING REED-MULLER CODES

Worst Case Errors: Up to d/2 (*d* is minimal distance).

(algorithm by Reed54)

DECODING REED-MULLER CODES

Worst Case Errors: Up to d/2 (*d* is minimal distance).

(algorithm by **Reed54**) **List Decoding:** max radius with constant # of words

DECODING REED-MULLER CODES

Worst Case Errors: Up to d/2 (*d* is minimal distance).

(algorithm by **Reed54**) **List Decoding:** max radius with constant # of words

Gopalan-Klivans-Zuckerman08, Bhowmick-Lovett15: List decoding radius = *d*.

 Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?
- Standard model in coding theory with recent breakthroughs in the last few years (e.g. Arıkan's polar codes)

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?
- Standard model in coding theory with recent breakthroughs in the last few years (e.g. Arıkan's polar codes)
- An ongoing research endeavor: how do Reed-Muller perform in Shannon's random error model?

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Symmetric Channel - BSC(p)

Each bit independently flipped with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Symmetric Channel - BSC(p)

Each bit independently flipped with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Symmetric Channel - BSC(p)

Each bit independently flipped with probability p

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Symmetric Channel - BSC(p)

Each bit independently flipped with probability p

(almost) equiv: fixed number t = pn of random errors
MODELS FOR RANDOM CORRUPTIONS (CHANNELS)

Binary Erasure Channel - BEC(p)

Each bit independently replaced by '?' with probability p

Binary Symmetric Channel - BSC(p)

Each bit independently flipped with probability p

(almost) equiv: fixed number t = pn of random errors

Shannon48: max rate that enables decoding (w.h.p.) is 1 - p (for BEC) and 1 - H(p) (for BSC). Codes achieving bound called **capacity achieving**.

Category:Capacity-achieving codes

From Wikipedia, the free encyclopedia

Pages in category "Capacity-achieving codes"

This category contains only the following page. This list may not reflect recent changes (learn more).

Ρ

• Polar code (coding theory)

Categories: Error detection and correction

• How many random erasures can RM(m, m - r - 1) tolerate?

- How many random erasures can RM(m, m r 1) tolerate?
- Fact: for any linear code, a subset S ⊆ [n] of erasures is uniquely decodable ⇔ columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations

- How many random erasures can RM(m, m r 1) tolerate?
- Fact: for any linear code, a subset S ⊆ [n] of erasures is uniquely decodable ⇔ columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- **Reminder:** PCM of RM(m, m-r-1) is E(m, r)

- How many random erasures can RM(m, m r 1) tolerate?
- Fact: for any linear code, a subset S ⊆ [n] of erasures is uniquely decodable ⇔ columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- **Reminder:** PCM of RM(m, m-r-1) is E(m, r)
- \implies can't correct more than $\binom{m}{\leq r}$ erasures

- How many random erasures can RM(m, m r 1) tolerate?
- Fact: for any linear code, a subset S ⊆ [n] of erasures is uniquely decodable ⇔ columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- **Reminder:** PCM of RM(m, m r 1) is E(m, r)
- \implies can't correct more than $\binom{m}{\leq r}$ erasures (also follows from Shannon's theorem)
- Question: Can we correct $(1 o(1)) \binom{m}{\leq r}$ erasures?

- How many random erasures can RM(m, m r 1) tolerate?
- Fact: for any linear code, a subset S ⊆ [n] of erasures is uniquely decodable ⇔ columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- **Reminder:** PCM of RM(m, m r 1) is E(m, r)
- \implies can't correct more than $\binom{m}{\leq r}$ erasures (also follows from Shannon's theorem)
- **Question:** Can we correct $(1-o(1))\binom{m}{< r}$ erasures?
- if yes, RM(m, m r 1) achieves capacity for the BEC

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_1, \ldots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \ldots, \mathbf{u}_t^r$ are linearly independent?

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

What's the max *t* such that for randomly picked $\mathbf{u}_1, \ldots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \ldots, \mathbf{u}_t^r$ are linearly independent?

E(m,r)

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

What's the max *t* such that for randomly picked $\mathbf{u}_1, \ldots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \ldots, \mathbf{u}_t^r$ are linearly independent?

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

What's the max *t* such that for randomly picked $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ are linearly independent?

E(m,r)

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on \mathbf{v})

What's the max *t* such that for randomly picked $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ are linearly independent?

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on **v**)

What's the max t such that for virial s the max *t* such that for randomly picked $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ are linearly independent?

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on **v**)

What's the max *t* such that for randomly picked $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ are linearly independent?

If $t = (1 - o(1)) \binom{m}{< r}$, RM(m, m - r - 1) achieves capacity for BEC.

For $\mathbf{v} \in \mathbb{F}_2^m$, let \mathbf{v}^r = the column indexed by \mathbf{v} in E(m, r)(all evals of monoms of deg $\leq r$ on **v**)

What's the max *t* such that for randomly picked $\mathbf{u}_1, \dots, \mathbf{u}_t \in \mathbb{F}_2^m$, $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ are linearly independent?

If $t = (1 - o(1)) \binom{m}{< r}$, RM(m, m - r - 1) achieves capacity for BEC.

sanity check: r = 1 is good

Main Question: Does RM(m, r) achieve capacity for BEC?

Main Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or $r = m - o(\sqrt{m/\log m})$.

Main Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or $r = m - o(\sqrt{m/\log m})$.

Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15: YES if rate is constant (i.e. $r = m/2 \pm O(\sqrt{m})$).

Main Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or $r = m - o(\sqrt{m/\log m})$.

Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15: YES if rate is constant (i.e. $r = m/2 \pm O(\sqrt{m})$).

Main Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or $r = m - o(\sqrt{m/\log m})$.

Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15: YES if rate is constant (i.e. $r = m/2 \pm O(\sqrt{m})$).

Open Problem: Prove for every degree *r*.

How is this relevant for error correction?

How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures in RM(m, m - r - 1) is correctable from errors in RM(m, m - 2r - 2).

How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures in RM(m, m - r - 1) is correctable from errors in RM(m, m - 2r - 2).

This talk: There is an efficient algorithm that corrects from errors, in RM(m, m-2r-2), any pattern which is correctable from erasures in RM(m, m-r-1).

How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures in RM(m, m - r - 1) is correctable from errors in RM(m, m - 2r - 2).

This talk: There is an efficient algorithm that corrects from errors, in RM(m, m-2r-2), any pattern which is correctable from erasures in RM(m, m-r-1).

(+ extensions to larger alphabets and other codes)

How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures in RM(m, m-r-1) is correctable from errors in RM(m, m-2r-2).

This talk: There is an efficient algorithm that corrects from errors, in RM(m, m-2r-2), any pattern which is correctable from erasures in RM(m, m-r-1).

(+ extensions to larger alphabets and other codes)

Corollary #1: (low-rate) efficient decoding algo for $(\frac{1}{2} - o(1))n$ random errors in $RM(m, o(\sqrt{m}))$ (min distance is $2^{m-\sqrt{m}}$).

Corollary #1: (low-rate) efficient decoding algo for $(\frac{1}{2} - o(1))n$ random errors in $RM(m, o(\sqrt{m}))$ (min distance is $2^{m-\sqrt{m}}$).

Corollary #2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in RM(m,m-r) if $r = o(\sqrt{m/\log m})$ (min distance is 2^r).

Corollary #1: (low-rate) efficient decoding algo for $(\frac{1}{2} - o(1))n$ random errors in $RM(m, o(\sqrt{m}))$ (min distance is $2^{m-\sqrt{m}}$).

Corollary #2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in RM(m,m-r) if $r = o(\sqrt{m/\log m})$ (min distance is 2^r).

Corollary #3: If $RM(m, \left(\frac{1+\rho}{2}\right)m)$ achieves capacity, efficient decoding algo for $2^{h\left(\frac{1-\rho}{2}\right)m}$ random errors in $RM(m, \rho m)$.

Corollary #1: (low-rate) efficient decoding algo for $(\frac{1}{2} - o(1))n$ random errors in $RM(m, o(\sqrt{m}))$ (min distance is $2^{m-\sqrt{m}}$).

Corollary #2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in RM(m,m-r) if $r = o(\sqrt{m/\log m})$ (min distance is 2^r).

Corollary #3: If $RM(m, \left(\frac{1+\rho}{2}\right)m)$ achieves capacity, efficient decoding algo for $2^{h\left(\frac{1-\rho}{2}\right)m}$ random errors in $RM(m, \rho m)$.

PROOF IDEA

Goal: decode in RM(m, m-2r-2) every pattern which is correctable from erasures in RM(m, m-r-1).

PROOF IDEA

Goal: decode in RM(m, m-2r-2) every pattern which is correctable from erasures in RM(m, m-r-1).

recall: $\{u_1, \dots, u_t\}$ correctable from erasures iff $\{u_1^r, \dots, u_t^r\}$ are linearly independent.

DUAL POLYNOMIALS

Fact: If $\{\mathbf{u}_1^r, \dots, \mathbf{u}_t^r\}$ lin. indep., \exists polys $\{f_1, \dots, f_t\}$ of deg $\leq r$ such that

$$f_i(\mathbf{u}_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

DUAL POLYNOMIALS

Fact: If $\{\mathbf{u}_1^r, \dots, \mathbf{u}_t^r\}$ lin. indep., \exists polys $\{f_1, \dots, f_t\}$ of deg $\leq r$ such that

$$f_i(\mathbf{u}_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Proof:

$$\begin{pmatrix} --- \mathbf{u}_1^r --- \\ \vdots \\ --- \mathbf{u}_t^r --- \end{pmatrix} \cdot \begin{pmatrix} | \\ f_i \\ | \end{pmatrix} = \mathbf{e}_i$$

DUAL POLYNOMIALS

Fact: If $\{\mathbf{u}_1^r, \dots, \mathbf{u}_t^r\}$ lin. indep., \exists polys $\{f_1, \dots, f_t\}$ of deg $\leq r$ such that

$$f_i(\mathbf{u}_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Proof:

$$\begin{pmatrix} --- \mathbf{u}_1^r --- \\ \vdots \\ --- \mathbf{u}_t^r --- \end{pmatrix} \cdot \begin{pmatrix} | \\ f_i \\ | \end{pmatrix} = \mathbf{e}_i$$

Solve this system for f_i .
DUAL POLYNOMIALS

Fact: If $\{\mathbf{u}_1^r, \dots, \mathbf{u}_t^r\}$ lin. indep., \exists polys $\{f_1, \dots, f_t\}$ of deg $\leq r$ such that

$$f_i(\mathbf{u}_j) = \begin{cases} 1 & i = j \\ 0 & i \neq j. \end{cases}$$

Proof:

$$\begin{pmatrix} --- \mathbf{u}_1^r --- \\ \vdots \\ --- \mathbf{u}_t^r --- \end{pmatrix} \cdot \begin{pmatrix} | \\ f_i \\ | \end{pmatrix} = \mathbf{e}_i$$

Solve this system for f_i .

Our approach would be to find those polynomials.

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree *r* poly *f*, is solvable:

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree r poly f, is solvable:

 \forall monomial M, deg $M \leq r$:

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree r poly f, is solvable:

 $\forall \text{ monomial } M, \text{ deg } M \leq r:$ $\sum_{i=1}^{t} f(\mathbf{u}_i) = f(\mathbf{v}) = 1$

$$(f \text{ non-trivial})$$

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree r poly f, is solvable:

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree r poly f, is solvable:

 $\forall \text{ monomial } M, \deg M \leq r:$ $\sum_{i=1}^{t} f(\mathbf{u}_i) = f(\mathbf{v}) = 1 \qquad (f \text{ non-trivial})$ $\sum_{i=1}^{t} (f \cdot M)(\mathbf{u}_i) = M(\mathbf{v}) \qquad (\mathbf{v} \text{ spanned by } U)$ $\sum_{i=1}^{t} (f \cdot M \cdot (x_{\ell} + \mathbf{v}_{\ell} + 1))(\mathbf{u}_i) = M(\mathbf{v})$ $(\mathbf{v} \text{ spanned by vectors in } U \text{ that agree with its } \ell \text{-th coordinate})$

 $U = {\mathbf{u}_1, \dots, \mathbf{u}_t} \in \mathbb{F}_2^m$ (unknown) set of error locations.

Main Claim: For every $\mathbf{v} \in \{0, 1\}^m$, $\mathbf{v} \in U \iff$ the following linear system, in unknown coeffs of degree *r* poly *f*, is solvable:

 $\begin{array}{l} \forall \text{ monomial } M, \deg M \leq r: \\ \sum_{i=1}^{t} f(\mathbf{u}_i) = f(\mathbf{v}) = 1 & (f \text{ non-trivial}) \\ \sum_{i=1}^{t} (f \cdot M)(\mathbf{u}_i) = M(\mathbf{v}) & (\mathbf{v} \text{ spanned by } U) \\ \sum_{i=1}^{t} (f \cdot M \cdot (x_{\ell} + \mathbf{v}_{\ell} + 1))(\mathbf{u}_i) = M(\mathbf{v}) \\ (\mathbf{v} \text{ spanned by vectors in } U \text{ that agree with its } \ell \text{-th coordinate}) \end{array}$

If U lin. indep. and $\mathbf{v} = \mathbf{u}_i \in U$, f_i is a solution. Conversely, if solvable and U lin. indep., can show $\mathbf{v} \in U$.

Every coefficient in the system is of the form $\sum_{i=1}^{t} g(\mathbf{u}_i)$ for poly g of degree $\leq 2r + 1$.

Every coefficient in the system is of the form $\sum_{i=1}^{t} g(\mathbf{u}_i)$ for poly g of degree $\leq 2r + 1$.

How to compute the coefficients?

Every coefficient in the system is of the form $\sum_{i=1}^{t} g(\mathbf{u}_i)$ for poly g of degree $\leq 2r + 1$.

How to compute the coefficients?

Input to the algo: $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in RM(m, m - 2r - 2)$, and \mathbf{e} characteristic vector of $U = {\mathbf{u}_1, \dots, \mathbf{u}_t}$.

Every coefficient in the system is of the form $\sum_{i=1}^{t} g(\mathbf{u}_i)$ for poly g of degree $\leq 2r + 1$.

How to compute the coefficients?

Input to the algo: $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in RM(m, m - 2r - 2)$, and \mathbf{e} characteristic vector of $U = {\mathbf{u}_1, \dots, \mathbf{u}_t}$.

Syndrome of y: $E(m, 2r+1) \cdot \mathbf{y} = E(m, 2r+1) \cdot \mathbf{e}$.

(recall: E(m, 2r + 1) is PCM of RM(m, m - 2r - 2))

Every coefficient in the system is of the form $\sum_{i=1}^{t} g(\mathbf{u}_i)$ for poly g of degree $\leq 2r + 1$.

How to compute the coefficients?

Input to the algo: $\mathbf{y} = \mathbf{c} + \mathbf{e}$ with $\mathbf{c} \in RM(m, m - 2r - 2)$, and \mathbf{e} characteristic vector of $U = {\mathbf{u}_1, \dots, \mathbf{u}_t}$.

Syndrome of y: $E(m, 2r + 1) \cdot \mathbf{y} = E(m, 2r + 1) \cdot \mathbf{e}$.

(recall: E(m, 2r+1) is PCM of RM(m, m-2r-2))

Corollary: The syndrome of **y** is a $\binom{m}{\leq 2r+1}$ long vector α , where $\alpha_M = \sum_{i=1}^{t} M(\mathbf{u}_i)$, for every monom M, deg $M \leq 2r + 1$.

BACK TO BEC

The algorithm works whenever $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ lin. indep., which happens (w.h.p.) whenever RM(m, m-r-1) achieves capacity.

BACK TO BEC

The algorithm works whenever $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ lin. indep., which happens (w.h.p.) whenever RM(m, m-r-1) achieves capacity.

Restating the main question: for which values of r, \mathbf{u}_1^r ,..., \mathbf{u}_t^r are linearly independent with high probability for $t = (1 - o(1)) {m \choose < r}$?

BACK TO BEC

The algorithm works whenever $\mathbf{u}_1^r, \dots, \mathbf{u}_t^r$ lin. indep., which happens (w.h.p.) whenever RM(m, m-r-1) achieves capacity.

Restating the main question: for which values of r, \mathbf{u}_1^r ,..., \mathbf{u}_t^r are linearly independent with high probability for $t = (1 - o(1)) {m \choose < r}$?

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

Prove RM achieves capacity for BEC for all degrees

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

- Prove RM achieves capacity for BEC for all degrees
- RM for BSC: much less is known! (ASW proved it achieves capacity for small rates)

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

- Prove RM achieves capacity for BEC for all degrees
- RM for BSC: much less is known! (ASW proved it achieves capacity for small rates)

