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Given the truth-table of a polynomial f € F[x4,...,x,,] of degree
<r,with 1/2—0(1) of the entries flipped, recover f efficiently.

Adversarial Errors: Impossible.
Random Errors?
(each coordinate flipped independently with probability 1/2 — o(1))

Theorem: There is an efficient algorithm to recover f,
even for r = o(4/m).

This talk is about decoding Reed-Muller codes from
random errors.
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REED-MULLER CODES: RM (m, 1)

» Messages: (coefficient vectors of) degree < r polynomials
feFlxy,..sXp]
« Encoding: evaluations over 3!

f(xl,xZ, X3, X4) == X1X2 + XBX4

I

o,0(0(1j0j0|0}j1j0|0j0O|1T|1|1|1|O0

A linear code, with

Block Length: 2™ :=n

Distance: 2™ (lightest codeword: x;x5-- - x,)
Dimension: () +(7)+---+(7):=(2)

« Rate: dimension/block length = (I})/2™
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MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of deg < r monomials:

m
VE]F2

M---1------ > M(V) = E(m’ r)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.

Duality: RM(m,r)* =RM(m,m—r —1).

= parity check matrix of RM(m,r) is E(m,m—r —1).
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DECODING REED-MULLER CODES

Worst Case Errors: Up to d/2 (d is minimal distance).

(algorithm by Reed54)
List Decoding: max radius with constant # of words

3 d ; Gopalan-Klivans-Zuckerman08,
¢« Bhowmick-Lovett15:
' List decoding radius = d.
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DECODING REED-MULLER CODES: AVERAGE CASE

» Reed-Muller Codes are not very good with respect to
worst-case errors (can’t have constant rate and min
distance at the same time)

» What about the Shannon model of random corruptions?

« Standard model in coding theory with recent breakthroughs
in the last few years (e.g. Arikan’s polar codes)

« An ongoing research endeavor: how do Reed-Muller
perform in Shannon’s random error model?
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MODELS FOR RANDOM CORRUPTIONS (CHANNELS)

Binary Erasure Channel — BEC(p)
Each bit independently replaced by ’?’ with probability p

oO|?(01|?]1|?]0

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0101117100

(almost) equiv: fixed number t = pn of random errors

Shannon48: max rate that enables decoding (w.h.p.) is 1 —p (for
BEC) and 1 —H(p) (for BSC). Codes achieving bound called
capacity achieving.



Category:Capacity-achieving =~ @ ter
codes

From Wikipedia, the free encyclopedia

Pages in category "Capacity-achieving codes"

This category contains only the following page. This list may not reflect
recent changes (learn more).

P

¢ Polar code (coding theory)

Categories: Error detection and correction
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» How many random erasures can RM(m, m —r — 1) tolerate?

» Fact: for any linear code, a subset S C [n] of erasures is
uniquely decodable <= columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

« Reminder: PCM of RM(m,m—r—1)is E(m,r)

« = can’t correct more than () erasures
(also follows from Shannon’s theorem)

» Question: Can we correct (1—o(1))(2}) erasures?

« if yes, RM(m,m —r — 1) achieves capacity for the BEC
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REED-MULLER CODES AND THE BEC

Forve F7, let v = the column indexed by v in E(m,r)
(all evals of monoms of deg < r onv)
E(m,r)

If t = (1—0(1))(Z), RM(m, m—r—1) achieves capacity for BEC.

randomly picked uj, ..., u, € F7,

What'’s the max t such that for
uj,...,u; are linearly independent?

sanity check: r =1 is good
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REED-MULLER CODES AND THE BEC

Main Question: Does RM(m, r) achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r=m—o(y/m/logm).

Kumar-Pfister15, Kudekar-Mondelli-Sasoglu-Urbanke15:
YES if rate is constant (i.e. r = m/2 £ 0(y/m)).

0 m/2 m
\ | |
o(m) O(v/m) o(+/m/logm)

Open Problem: Prove for every degree r.
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How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m,m —r — 1) is correctable from errors in
RM(m,m—2r—2).

This talk: There is an efficient algorithm that corrects from
errors, in RM(m, m— 2r — 2), any pattern which is correctable
from erasures in RM(m,m—r —1).

(+ extensions to larger alphabets and other codes)
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Corollary #1: (low-rate) efficient decoding algo for (5 —o(1))n
random errors in RM (m, o(4/m)) (min distance is 2m=v™) .

Corollary #2: (high-rate) efficient decoding algo for

(1—o0(1))(Z.) random errors in RM(m, m—r) if r = o(v/m/logm)
(min distance is 27) .

Corollary #3: If RM(m, (”Tp) m) achieves capacity, efficient
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decoding algo for zh(Tp)m random errors in RM (m, pm).
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PROOF IDEA

Goal: decode in RM(m,m— 2r — 2) every pattern which is
correctable from erasures in RM(m,m—r —1).

recall: {u,,...,u.} correctable from erasures iff {u],...,u;} are
linearly independent.

E(m,r)
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DUAL POLYNOMIALS

Fact: If {u],...,uf}lin.indep., 3 polys {f;,...,f;} of deg<r
such that

1 i=j
fi(uj)—{o P4
Proof:
_ul_ |
fi =€
—u — |

Solve this system for f;.

Our approach would be to find those polynomials.
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ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

U={u,...,u} € F3! (unknown) set of error locations.

Main Claim: Forevery ve {0,1}", ve U < the following
linear system, in unknown coeffs of degree r poly f, is solvable:

Y monomial M, degM < r:

Zt: flud=f)=1 (f non-trivial)
=

2(f - M)(w) =M(v) (v spanned by U)
=1

t
D (F - M- (g + v + 1D)(u;) = M(v)
i=1
(v spanned by vectors in U that agree with its £-th coordinate)
If U lin. indep. and v=u; € U, f; is a solution. Conversely, if

solvable and U lin. indep., can show v e U.
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Every coefficient in the system is of the form Zle g(u;) for poly g
of degree < 2r + 1.

How to compute the coefficients?

Input to the algo: y=c+ewithceRM(m,m—2r—2),and e
characteristic vector of U = {u,, ..., u,}.

Syndrome of y: E(m,2r +1)-y=E(m,2r+1)-e.

(recall: E(m,2r +1) is PCM of RM(m,m—2r —2))

m

Corollary: The syndrome of y is a (_,r,,) long vector a, where
ay = 2, M(w;), for every monom M, degM < 2r + 1.
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