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Errors: Impossible.
Random
Errors?
(each coordinate flipped independently with probability 1/2− o(1))

Theorem: There is an efficient algorithm to recover f ,
even for r = o(

p
m).

This talk is about decoding Reed-Muller codes from
random errors.



Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→
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More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M


 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.
Duality: RM(m, r)⊥ = RM(m, m− r − 1).
=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).
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Decoding Reed-Muller Codes
Worst
Case
Errors: Up to d/2 (d is minimal distance).

d d/2

(algorithm by Reed54)

List
Decoding: max radius with constant # of words

Gopalan-Klivans-Zuckerman08,
Bhowmick-Lovett15:
List decoding radius = d.
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Decoding Reed-Muller Codes: Average Case
• Reed-Muller Codes are not very good with respect to

worst-case errors (can’t have constant rate and min
distance at the same time)

• What about the Shannon model of random corruptions?
• Standard model in coding theory with recent breakthroughs

in the last few years (e.g. Arıkan’s polar codes)
• An ongoing research endeavor: how do Reed-Muller

perform in Shannon’s random error model?
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Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 01 1 0

(almost) equiv: fixed number t = pn of random errors

Shannon48: max rate that enables decoding (w.h.p.) is 1− p (for
BEC) and 1−H(p) (for BSC). Codes achieving bound called
capacity achieving.





Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?

• Fact: for any linear code, a subset S ⊆ [n] of erasures is
uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC
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2 , let vr = the column indexed by v in E(m, r)
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What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm
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�
, RM(m, m− r −1) achieves capacity for BEC.

sanity check: r = 1 is good



Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m
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Problem: Prove for every degree r.
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Decoding Erasures to Decoding Errors
How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).
This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
(+ extensions to larger alphabets and other codes)
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talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
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Decoding Errors in RM Codes
Corollary
#1: (low-rate) efficient decoding algo for (1

2 − o(1))n
random errors in RM(m, o(

p
m)) (min distance is 2m−pm) .

Corollary
#2: (high-rate) efficient decoding algo for
(1− o(1))
� m
≤r

�
random errors in RM(m, m− r) if r = o(

p
m/ log m)

(min distance is 2r ) .
Corollary
#3: If RM(m,
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1+ρ

2
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Proof Idea
Goal: decode in RM(m, m− 2r − 2) every pattern which is
correctable from erasures in RM(m, m− r − 1).

0 0 1 1 01 1 0

recall: {u1, . . . ,ut} correctable from erasures iff {ur
1, . . . ,ur

t } are
linearly independent.


E(m, r)
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Dual Polynomials
Fact: If {ur

1, . . . ,ur
t } lin. indep., ∃ polys { f1, . . . , ft} of deg≤ r

such that

fi(u j) =

¨
1 i = j

0 i ̸= j.

Proof: —— ur
1 ——
...

—— ur
t ——

 ·
 |fi|

= ei

Solve this system for fi.

Our approach would be to find those polynomials.
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Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 ( f non-trivial)
t∑

i=1
( f ·M)(ui) = M(v) (v spanned by U )

t∑
i=1
( f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .
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Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.

How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.
Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2) )

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.
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Back to BEC
The algorithm works whenever ur

1, . . . ,ur
t lin. indep., which

happens (w.h.p.) whenever RM(m, m− r − 1) achieves capacity.

Restating the main question: for which values of r, ur
1, . . . ,ur

t are
linearly independent with high probability for t = (1− o(1))

� m
≤r

�
?

m/20 m

o(m) o(
p

m/ log m)O(
p

m)
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Summary
Decoding algo for RM far beyond the minimal distance, both for
high-rate and low-rate regimes.

Open
Problems:
• Prove RM achieves capacity for BEC for all degrees

• RM for BSC: much less is known! (ASW proved it achieves
capacity for small rates)
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