
Efficiently Decoding Reed Muller Codes
From Random Errors

Ben Lee Volk

Joint work with

Ramprasad Saptharishi
Amir Shpilka

Tel Aviv University

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

1 0 1 1 0 0 01 0 1 1 0 0 0 1 1

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

1 0 1 1 0 0 01 0 1 1 0 0 0 1 1

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

Adversarial
Errors: Impossible.

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

Adversarial
Errors: Impossible.
Random
Errors?
(each coordinate flipped independently with probability 1/2− o(1))

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

Adversarial
Errors: Impossible.
Random
Errors?
(each coordinate flipped independently with probability 1/2− o(1))

Theorem: There is an efficient algorithm to recover f ,
even for r = o(

p
m).

A game!
Given the truth-table of a polynomial f ∈ F[x1, . . . , xm] of degree
≤ r, with 1/2− o(1) of the entries flipped, recover f efficiently.

0 1 0 0 1 1 11 0 1 1 0 0 0 1 1

Adversarial
Errors: Impossible.
Random
Errors?
(each coordinate flipped independently with probability 1/2− o(1))

Theorem: There is an efficient algorithm to recover f ,
even for r = o(

p
m).

This talk is about decoding Reed-Muller codes from
random errors.

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with

• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)

• Dimension:
�m

0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�

• Rate: dimension/block length =
� m
≤r

�
/2m

Reed-Muller Codes: RM(m, r)
• Messages: (coefficient vectors of) degree ≤ r polynomials

f ∈ F2[x1, . . . , xm]

• Encoding: evaluations over Fm
2

f (x1, x2, x3, x4) = x1 x2 + x3 x47→

0 0 0 1 0 0 0 1 0 0 0 1 1 1 1 0

A linear code, with
• Block Length: 2m := n

• Distance: 2m−r (lightest codeword: x1 x2 · · · x r)
• Dimension:

�m
0

�
+
�m

1

�
+ · · ·+ �mr � := � m≤r

�
• Rate: dimension/block length =

� m
≤r

�
/2m

More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M

 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.
Duality: RM(m, r)⊥ = RM(m, m− r − 1).
=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).

More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M

 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.
Duality: RM(m, r)⊥ = RM(m, m− r − 1).
=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).

More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M

 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.

Duality: RM(m, r)⊥ = RM(m, m− r − 1).
=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).

More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M

 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.
Duality: RM(m, r)⊥ = RM(m, m− r − 1).

=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).

More Properties of Reed-Muller Codes
Generator Matrix: evaluation matrix of deg≤ r monomials:

v ∈ Fm
2

M

 := E(m, r)M(v)

(Every codeword is spanned by the rows.)

Linear codes can be also defined by their parity check matrix: a
matrix H whose kernel is the code.
Duality: RM(m, r)⊥ = RM(m, m− r − 1).
=⇒ parity check matrix of RM(m, r) is E(m, m− r − 1).

Decoding Reed-Muller Codes
Worst
Case
Errors: Up to d/2 (d is minimal distance).

d d/2

(algorithm by Reed54)

List
Decoding: max radius with constant # of words

Gopalan-Klivans-Zuckerman08,
Bhowmick-Lovett15:
List decoding radius = d.

Decoding Reed-Muller Codes
Worst
Case
Errors: Up to d/2 (d is minimal distance).

d d/2

(algorithm by Reed54)
List
Decoding: max radius with constant # of words

Gopalan-Klivans-Zuckerman08,
Bhowmick-Lovett15:
List decoding radius = d.

Decoding Reed-Muller Codes
Worst
Case
Errors: Up to d/2 (d is minimal distance).

d d/2

(algorithm by Reed54)
List
Decoding: max radius with constant # of words

d Gopalan-Klivans-Zuckerman08,
Bhowmick-Lovett15:
List decoding radius = d.

Decoding Reed-Muller Codes: Average Case
• Reed-Muller Codes are not very good with respect to

worst-case errors (can’t have constant rate and min
distance at the same time)

• What about the Shannon model of random corruptions?
• Standard model in coding theory with recent breakthroughs

in the last few years (e.g. Arıkan’s polar codes)
• An ongoing research endeavor: how do Reed-Muller

perform in Shannon’s random error model?

Decoding Reed-Muller Codes: Average Case
• Reed-Muller Codes are not very good with respect to

worst-case errors (can’t have constant rate and min
distance at the same time)

• What about the Shannon model of random corruptions?

• Standard model in coding theory with recent breakthroughs
in the last few years (e.g. Arıkan’s polar codes)

• An ongoing research endeavor: how do Reed-Muller
perform in Shannon’s random error model?

Decoding Reed-Muller Codes: Average Case
• Reed-Muller Codes are not very good with respect to

worst-case errors (can’t have constant rate and min
distance at the same time)

• What about the Shannon model of random corruptions?
• Standard model in coding theory with recent breakthroughs

in the last few years (e.g. Arıkan’s polar codes)

• An ongoing research endeavor: how do Reed-Muller
perform in Shannon’s random error model?

Decoding Reed-Muller Codes: Average Case
• Reed-Muller Codes are not very good with respect to

worst-case errors (can’t have constant rate and min
distance at the same time)

• What about the Shannon model of random corruptions?
• Standard model in coding theory with recent breakthroughs

in the last few years (e.g. Arıkan’s polar codes)
• An ongoing research endeavor: how do Reed-Muller

perform in Shannon’s random error model?

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 00 0 1

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 00 0 1

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 01 1 0

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 01 1 0

(almost) equiv: fixed number t = pn of random errors

Models for random corruptions (channels)
Binary Erasure Channel — BEC(p)

Each bit independently replaced by ’?’ with probability p

0 0 1 1 0? ? ?

Binary Symmetric Channel — BSC(p)
Each bit independently flipped with probability p

0 0 1 1 01 1 0

(almost) equiv: fixed number t = pn of random errors

Shannon48: max rate that enables decoding (w.h.p.) is 1− p (for
BEC) and 1−H(p) (for BSC). Codes achieving bound called
capacity achieving.

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?

• Fact: for any linear code, a subset S ⊆ [n] of erasures is
uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?
• Fact: for any linear code, a subset S ⊆ [n] of erasures is

uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?
• Fact: for any linear code, a subset S ⊆ [n] of erasures is

uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?
• Fact: for any linear code, a subset S ⊆ [n] of erasures is

uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?
• Fact: for any linear code, a subset S ⊆ [n] of erasures is

uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Decoding Erasures
• How many random erasures can RM(m, m− r − 1) tolerate?
• Fact: for any linear code, a subset S ⊆ [n] of erasures is

uniquely decodable ⇐⇒ columns indexed by S in
parity-check matrix are linearly independent
decoding algo: solve system of linear equations

• Reminder: PCM of RM(m, m− r − 1) is E(m, r)

• =⇒ can’t correct more than
� m
≤r

�
erasures

(also follows from Shannon’s theorem)
• Question: Can we correct (1− o(1))

� m
≤r

�
erasures?

• if yes, RM(m, m− r − 1) achieves capacity for the BEC

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

If t = (1− o(1))
� m
≤r

�
, RM(m, m− r −1) achieves capacity for BEC.

Reed-Muller Codes and the BEC
For v ∈ Fm

2 , let vr = the column indexed by v in E(m, r)
(all evals of monoms of deg≤ r on v)

What’s the max t such that for
randomly picked u1, . . . ,ut ∈ Fm

2 ,
ur

1, . . . ,ur
t are linearly independent?

E(m, r)

If t = (1− o(1))
� m
≤r

�
, RM(m, m− r −1) achieves capacity for BEC.

sanity check: r = 1 is good

Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?

Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Open
Problem: Prove for every degree r.

Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).

Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Open
Problem: Prove for every degree r.

Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Open
Problem: Prove for every degree r.

Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Open
Problem: Prove for every degree r.

Reed-Muller Codes and the BEC
Main
Question: Does RM(m, r) achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if r = o(m) or
r = m− o(
p

m/ log m).
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. r = m/2±O(

p
m)).

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Open
Problem: Prove for every degree r.

Decoding Erasures to Decoding Errors
How is this relevant for error correction?

Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).
This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
(+ extensions to larger alphabets and other codes)

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Decoding Erasures to Decoding Errors
How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).

This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
(+ extensions to larger alphabets and other codes)

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Decoding Erasures to Decoding Errors
How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).
This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).

(+ extensions to larger alphabets and other codes)

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Decoding Erasures to Decoding Errors
How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).
This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
(+ extensions to larger alphabets and other codes)

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Decoding Erasures to Decoding Errors
How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures
in RM(m, m− r − 1) is correctable from errors in
RM(m, m− 2r − 2).
This
talk: There is an efficient algorithm that corrects from
errors, in RM(m, m− 2r − 2), any pattern which is correctable
from erasures in RM(m, m− r − 1).
(+ extensions to larger alphabets and other codes)

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Decoding Errors in RM Codes
Corollary
#1: (low-rate) efficient decoding algo for (1

2 − o(1))n
random errors in RM(m, o(

p
m)) (min distance is 2m−pm) .

Corollary
#2: (high-rate) efficient decoding algo for
(1− o(1))
� m
≤r

�
random errors in RM(m, m− r) if r = o(

p
m/ log m)

(min distance is 2r) .
Corollary
#3: If RM(m,

�
1+ρ

2

�
m) achieves capacity, efficient

decoding algo for 2h
�

1−ρ
2

�
m random errors in RM(m,ρm).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

of

 e
rro

rs
 c

or
re

ct
ed

1−ρ
h
� 1−ρ

2

�

Decoding Errors in RM Codes
Corollary
#1: (low-rate) efficient decoding algo for (1

2 − o(1))n
random errors in RM(m, o(

p
m)) (min distance is 2m−pm) .

Corollary
#2: (high-rate) efficient decoding algo for
(1− o(1))
� m
≤r

�
random errors in RM(m, m− r) if r = o(

p
m/ log m)

(min distance is 2r) .

Corollary
#3: If RM(m,
�

1+ρ
2

�
m) achieves capacity, efficient

decoding algo for 2h
�

1−ρ
2

�
m random errors in RM(m,ρm).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

of

 e
rro

rs
 c

or
re

ct
ed

1−ρ
h
� 1−ρ

2

�

Decoding Errors in RM Codes
Corollary
#1: (low-rate) efficient decoding algo for (1

2 − o(1))n
random errors in RM(m, o(

p
m)) (min distance is 2m−pm) .

Corollary
#2: (high-rate) efficient decoding algo for
(1− o(1))
� m
≤r

�
random errors in RM(m, m− r) if r = o(

p
m/ log m)

(min distance is 2r) .
Corollary
#3: If RM(m,

�
1+ρ

2

�
m) achieves capacity, efficient

decoding algo for 2h
�

1−ρ
2

�
m random errors in RM(m,ρm).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

of

 e
rro

rs
 c

or
re

ct
ed

1−ρ
h
� 1−ρ

2

�

Decoding Errors in RM Codes
Corollary
#1: (low-rate) efficient decoding algo for (1

2 − o(1))n
random errors in RM(m, o(

p
m)) (min distance is 2m−pm) .

Corollary
#2: (high-rate) efficient decoding algo for
(1− o(1))
� m
≤r

�
random errors in RM(m, m− r) if r = o(

p
m/ log m)

(min distance is 2r) .
Corollary
#3: If RM(m,

�
1+ρ

2

�
m) achieves capacity, efficient

decoding algo for 2h
�

1−ρ
2

�
m random errors in RM(m,ρm).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ρ

of

 e
rro

rs
 c

or
re

ct
ed

1−ρ
h
� 1−ρ

2

�

Proof Idea
Goal: decode in RM(m, m− 2r − 2) every pattern which is
correctable from erasures in RM(m, m− r − 1).

0 0 1 1 01 1 0

recall: {u1, . . . ,ut} correctable from erasures iff {ur
1, . . . ,ur

t } are
linearly independent.

E(m, r)

Proof Idea
Goal: decode in RM(m, m− 2r − 2) every pattern which is
correctable from erasures in RM(m, m− r − 1).

0 0 1 1 01 1 0

recall: {u1, . . . ,ut} correctable from erasures iff {ur
1, . . . ,ur

t } are
linearly independent.

E(m, r)

Dual Polynomials
Fact: If {ur

1, . . . ,ur
t } lin. indep., ∃ polys { f1, . . . , ft} of deg≤ r

such that

fi(u j) =

¨
1 i = j

0 i ̸= j.

Proof: —— ur
1 ——
...

—— ur
t ——

 ·
 |fi|

= ei

Solve this system for fi.

Our approach would be to find those polynomials.

Dual Polynomials
Fact: If {ur

1, . . . ,ur
t } lin. indep., ∃ polys { f1, . . . , ft} of deg≤ r

such that

fi(u j) =

¨
1 i = j

0 i ̸= j.

Proof: —— ur
1 ——
...

—— ur
t ——

 ·
 |fi|

= ei

Solve this system for fi.

Our approach would be to find those polynomials.

Dual Polynomials
Fact: If {ur

1, . . . ,ur
t } lin. indep., ∃ polys { f1, . . . , ft} of deg≤ r

such that

fi(u j) =

¨
1 i = j

0 i ̸= j.

Proof: —— ur
1 ——
...

—— ur
t ——

 ·
 |fi|

= ei

Solve this system for fi.

Our approach would be to find those polynomials.

Dual Polynomials
Fact: If {ur

1, . . . ,ur
t } lin. indep., ∃ polys { f1, . . . , ft} of deg≤ r

such that

fi(u j) =

¨
1 i = j

0 i ̸= j.

Proof: —— ur
1 ——
...

—— ur
t ——

 ·
 |fi|

= ei

Solve this system for fi.

Our approach would be to find those polynomials.

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)
t∑

i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:

∀ monomial M , deg M ≤ r:
t∑

i=1
f (ui) = f (v) = 1 (f non-trivial)

t∑
i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)
t∑

i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)

t∑
i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)
t∑

i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)
t∑

i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)

If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Algorithm: Solve a system of Linear Equations
U = {u1, . . . ,ut} ∈ Fm

2 (unknown) set of error locations.

Main
Claim: For every v ∈ {0,1}m, v ∈ U ⇐⇒ the following
linear system, in unknown coeffs of degree r poly f , is solvable:
∀ monomial M , deg M ≤ r:

t∑
i=1

f (ui) = f (v) = 1 (f non-trivial)
t∑

i=1
(f ·M)(ui) = M(v) (v spanned by U)

t∑
i=1
(f ·M · (xℓ + vℓ + 1))(ui) = M(v)

(v spanned by vectors in U that agree with its ℓ-th coordinate)
If U lin. indep. and v= ui ∈ U , fi is a solution. Conversely, if
solvable and U lin. indep., can show v ∈ U .

Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.

How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.
Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2))

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.

Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.
How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.
Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2))

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.

Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.
How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.

Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2))

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.

Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.
How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.
Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2))

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.

Setting up system of Equations
Every coefficient in the system is of the form

∑t
i=1 g(ui) for poly g

of degree ≤ 2r + 1.
How to compute the coefficients?

Input to the algo: y= c+ e with c ∈ RM(m, m− 2r − 2), and e
characteristic vector of U = {u1, . . . ,ut}.
Syndrome of y: E(m, 2r + 1) · y= E(m, 2r + 1) · e.
(recall: E(m, 2r + 1) is PCM of RM(m, m− 2r − 2))

Corollary: The syndrome of y is a
� m
≤2r+1

�
long vector α, where

αM =
∑t

i=1 M(ui), for every monom M , deg M ≤ 2r + 1.

Back to BEC
The algorithm works whenever ur

1, . . . ,ur
t lin. indep., which

happens (w.h.p.) whenever RM(m, m− r − 1) achieves capacity.

Restating the main question: for which values of r, ur
1, . . . ,ur

t are
linearly independent with high probability for t = (1− o(1))

� m
≤r

�
?

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Back to BEC
The algorithm works whenever ur

1, . . . ,ur
t lin. indep., which

happens (w.h.p.) whenever RM(m, m− r − 1) achieves capacity.

Restating the main question: for which values of r, ur
1, . . . ,ur

t are
linearly independent with high probability for t = (1− o(1))

� m
≤r

�
?

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Back to BEC
The algorithm works whenever ur

1, . . . ,ur
t lin. indep., which

happens (w.h.p.) whenever RM(m, m− r − 1) achieves capacity.

Restating the main question: for which values of r, ur
1, . . . ,ur

t are
linearly independent with high probability for t = (1− o(1))

� m
≤r

�
?

m/20 m

o(m) o(
p

m/ log m)O(
p

m)

Summary
Decoding algo for RM far beyond the minimal distance, both for
high-rate and low-rate regimes.

Open
Problems:
• Prove RM achieves capacity for BEC for all degrees

• RM for BSC: much less is known! (ASW proved it achieves
capacity for small rates)

m/20 m

Summary
Decoding algo for RM far beyond the minimal distance, both for
high-rate and low-rate regimes.

Open
Problems:
• Prove RM achieves capacity for BEC for all degrees

• RM for BSC: much less is known! (ASW proved it achieves
capacity for small rates)

m/20 m

Summary
Decoding algo for RM far beyond the minimal distance, both for
high-rate and low-rate regimes.

Open
Problems:
• Prove RM achieves capacity for BEC for all degrees
• RM for BSC: much less is known! (ASW proved it achieves

capacity for small rates)

m/20 m

Summary
Decoding algo for RM far beyond the minimal distance, both for
high-rate and low-rate regimes.

Open
Problems:
• Prove RM achieves capacity for BEC for all degrees
• RM for BSC: much less is known! (ASW proved it achieves

capacity for small rates)

m/20 m

Thank You

