EFFICIENTLY DECODING REED MULLER CODES FROM RANDOM ERRORS

Ben Lee Volk

Joint work with
Ramprasad Saptharishi
Amir Shpilka
Tel Aviv University

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

1	0	1	0	1	1	1	0	1	0	0	0	0	1	0	1

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

1	0	1	0	1	1	1	0	1	0	0	0	0	1	0	1

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

Adversarial Errors: Impossible.

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

Adversarial Errors: Impossible.
Random Errors?
(each coordinate flipped independently with probability $1 / 2-o(1)$)

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

Adversarial Errors: Impossible.
Random Errors?
(each coordinate flipped independently with probability $1 / 2-o(1)$)
Theorem: There is an efficient algorithm to recover f, even for $r=o(\sqrt{m})$.

A GAME!

Given the truth-table of a polynomial $f \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ of degree $\leq r$, with $1 / 2-o(1)$ of the entries flipped, recover f efficiently.

0	1	1	0	1	0	0	1	1	0	0	0	1	1	1	1

Adversarial Errors: Impossible.
Random Errors?
(each coordinate flipped independently with probability $1 / 2-o(1)$)
Theorem: There is an efficient algorithm to recover f, even for $r=o(\sqrt{m})$.

This talk is about decoding Reed-Muller codes from random errors.

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

A linear code, with

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

A linear code, with

- Block Length: $2^{m}:=n$

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

A linear code, with

- Block Length: $2^{m}:=n$
- Distance: 2^{m-r} (lightest codeword: $x_{1} x_{2} \cdots x_{r}$)

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

A linear code, with

- Block Length: $2^{m}:=n$
- Distance: 2^{m-r} (lightest codeword: $x_{1} x_{2} \cdots x_{r}$)
- Dimension: $\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}:=\binom{m}{\leq r}$

REED-MULLER CODES: $R M(m, r)$

- Messages: (coefficient vectors of) degree $\leq r$ polynomials $f \in \mathbb{F}_{2}\left[x_{1}, \ldots, x_{m}\right]$
- Encoding: evaluations over \mathbb{F}_{2}^{m}

$$
f\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=x_{1} x_{2}+x_{3} x_{4}
$$

0	0	0	1	0	0	0	1	0	0	0	1	1	1	1	0

A linear code, with

- Block Length: $2^{m}:=n$
- Distance: 2^{m-r} (lightest codeword: $x_{1} x_{2} \cdots x_{r}$)
- Dimension: $\binom{m}{0}+\binom{m}{1}+\cdots+\binom{m}{r}:=\binom{m}{\leq r}$
- Rate: dimension/block length $=\binom{m}{\leq r} / 2^{m}$

MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of $\operatorname{deg} \leq r$ monomials:

MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of $\operatorname{deg} \leq r$ monomials:

(Every codeword is spanned by the rows.)

MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of $\operatorname{deg} \leq r$ monomials:

(Every codeword is spanned by the rows.)
Linear codes can be also defined by their parity check matrix: a matrix H whose kernel is the code.

MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of $\operatorname{deg} \leq r$ monomials:

(Every codeword is spanned by the rows.)
Linear codes can be also defined by their parity check matrix: a matrix H whose kernel is the code.

Duality: $R M(m, r)^{\perp}=R M(m, m-r-1)$.

MORE PROPERTIES OF REED-MULLER CODES

Generator Matrix: evaluation matrix of $\operatorname{deg} \leq r$ monomials:

(Every codeword is spanned by the rows.)
Linear codes can be also defined by their parity check matrix: a matrix H whose kernel is the code.

Duality: $R M(m, r)^{\perp}=R M(m, m-r-1)$.
\Longrightarrow parity check matrix of $R M(m, r)$ is $E(m, m-r-1)$.

DECODING REED-MULLER CODES

Worst Case Errors: Up to $d / 2$ (d is minimal distance).

(algorithm by Reed54)

DECODING REED-MULLER CODES

Worst Case Errors: Up to $d / 2$ (d is minimal distance).

(algorithm by Reed54)
List Decoding: max radius with constant \# of words

DECODING REED-MULLER CODES

Worst Case Errors: Up to $d / 2$ (d is minimal distance).

(algorithm by Reed54)
List Decoding: max radius with constant \# of words

Gopalan-Klivans-Zuckerman08, Bhowmick-Lovett15:
List decoding radius $=d$.

DECODING REED-MULLER CODES: AVERAGE CASE

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)

DECODING REED-MULLER CODES: AVERAGE CASE

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?

DECODING REED-MULLER CODES: AVERAGE CASE

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?
- Standard model in coding theory with recent breakthroughs in the last few years (e.g. Arıkan's polar codes)

DECODING REED-MULLER CODES: AVERAGE CASE

- Reed-Muller Codes are not very good with respect to worst-case errors (can't have constant rate and min distance at the same time)
- What about the Shannon model of random corruptions?
- Standard model in coding theory with recent breakthroughs in the last few years (e.g. Arıkan's polar codes)
- An ongoing research endeavor: how do Reed-Muller perform in Shannon's random error model?

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	0	0	1	0	1	1	0

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

MODELS FOR RANDOM CORRUPTIONS [CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

Binary Symmetric Channel - BSC(p)
Each bit independently flipped with probability p

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

Binary Symmetric Channel - BSC(p)
Each bit independently flipped with probability p

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

Binary Symmetric Channel - BSC(p)
Each bit independently flipped with probability p

MODELS FOR RANDOM CORRUPTIONS (CHANNELS〕

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

Binary Symmetric Channel - BSC(p)
Each bit independently flipped with probability p

(almost) equiv: fixed number $t=p n$ of random errors

MODELS FOR RANDOM CORRUPTIONS (CHANNELS)

Binary Erasure Channel - BEC(p)
Each bit independently replaced by '?' with probability p

0	$?$	0	1	$?$	1	$?$	0

Binary Symmetric Channel - BSC(p)
Each bit independently flipped with probability p

0	1	0	1	1	1	0	0

(almost) equiv: fixed number $t=p n$ of random errors
Shannon48: max rate that enables decoding (w.h.p.) is $1-p$ (for BEC) and $1-H(p)$ (for BSC). Codes achieving bound called capacity achieving.

Category:Capacity-achieving codes

? Help

From Wikipedia, the free encyclopedia

Pages in category "Capacity-achieving codes"

This category contains only the following page. This list may not reflect recent changes (learn more).

P

- Polar code (coding theory)

Categories: Error detection and correction

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?
- Fact: for any linear code, a subset $S \subseteq[n]$ of erasures is uniquely decodable \Longleftrightarrow columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?
- Fact: for any linear code, a subset $S \subseteq[n]$ of erasures is uniquely decodable \Longleftrightarrow columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- Reminder: PCM of $R M(m, m-r-1)$ is $E(m, r)$

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?
- Fact: for any linear code, a subset $S \subseteq[n]$ of erasures is uniquely decodable \Longleftrightarrow columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- Reminder: PCM of $R M(m, m-r-1)$ is $E(m, r)$
- \Longrightarrow can't correct more than $\binom{m}{\leq r}$ erasures

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?
- Fact: for any linear code, a subset $S \subseteq[n]$ of erasures is uniquely decodable \Longleftrightarrow columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- Reminder: PCM of $R M(m, m-r-1)$ is $E(m, r)$
- \Longrightarrow can't correct more than $\binom{m}{\leq r}$ erasures (also follows from Shannon's theorem)
- Question: Can we correct $(1-o(1))\binom{m}{\leq r}$ erasures?

DECODING ERASURES

- How many random erasures can $R M(m, m-r-1)$ tolerate?
- Fact: for any linear code, a subset $S \subseteq[n]$ of erasures is uniquely decodable \Longleftrightarrow columns indexed by S in parity-check matrix are linearly independent decoding algo: solve system of linear equations
- Reminder: PCM of $R M(m, m-r-1)$ is $E(m, r)$
- \Longrightarrow can't correct more than $\binom{m}{\leq r}$ erasures (also follows from Shannon's theorem)
- Question: Can we correct $(1-o(1))\binom{m}{\leq r}$ erasures?
- if yes, $R M(m, m-r-1)$ achieves capacity for the BEC

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

1

$$
E(m, r)
$$

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

$$
E(m, r)
$$

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

$$
E(m, r)
$$

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

If $t=(1-o(1))\binom{m}{\leq r}, R M(m, m-r-1)$ achieves capacity for BEC.

REED-MULLER CODES AND THE BEC

For $\mathbf{v} \in \mathbb{F}_{2}^{m}$, let $\mathbf{v}^{r}=$ the column indexed by \mathbf{v} in $E(m, r)$ (all evals of monoms of $\operatorname{deg} \leq r$ on \mathbf{v})

What's the max t such that for randomly picked $\mathbf{u}_{1}, \ldots, \mathbf{u}_{t} \in \mathbb{F}_{2}^{m}$, $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent?

If $t=(1-o(1))\binom{m}{\leq r}, R M(m, m-r-1)$ achieves capacity for BEC.
sanity check: $r=1$ is good

REED-MULLER CODES AND THE BEC

Main Question: Does $R M(m, r)$ achieve capacity for BEC?

REED-MULLER CODES AND THE BEC

Main Question: Does $R M(m, r)$ achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if $r=o(m)$ or $r=m-o(\sqrt{m / \log m})$.

REED-MULLER CODES AND THE BEC

Main Question: Does $R M(m, r)$ achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if $r=o(m)$ or $r=m-o(\sqrt{m / \log m})$.

Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15: YES if rate is constant (i.e. $r=m / 2 \pm O(\sqrt{m})$).

REED-MULLER CODES AND THE BEC

Main Question: Does $R M(m, r)$ achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if $r=o(m)$ or
$r=m-o(\sqrt{m / \log m})$.
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. $r=m / 2 \pm O(\sqrt{m})$).

REED-MULLER CODES AND THE BEC

Main Question: Does $R M(m, r)$ achieve capacity for BEC?
Abbe-Shpilka-Wigderson15: YES if $r=o(m)$ or
$r=m-o(\sqrt{m / \log m})$.
Kumar-Pfister15, Kudekar-Mondelli-Şaşoğlu-Urbanke15:
YES if rate is constant (i.e. $r=m / 2 \pm O(\sqrt{m})$).

Open Problem: Prove for every degree r.

DECODING ERASURES TO DECODING ERRORS

How is this relevant for error correction?

DECODING ERASURES TO DECODING ERRORS

How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures in $R M(m, m-r-1)$ is correctable from errors in $R M(m, m-2 r-2)$.

DECODING ERASURES TO DECODING ERRORS

How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures in $R M(m, m-r-1)$ is correctable from errors in $R M(m, m-2 r-2)$.

This talk: There is an efficient algorithm that corrects from errors, in $R M(m, m-2 r-2)$, any pattern which is correctable from erasures in $R M(m, m-r-1)$.

DECODING ERASURES TO DECODING ERRORS

How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures in $R M(m, m-r-1)$ is correctable from errors in $R M(m, m-2 r-2)$.

This talk: There is an efficient algorithm that corrects from errors, in $R M(m, m-2 r-2)$, any pattern which is correctable from erasures in $R M(m, m-r-1)$.
(+ extensions to larger alphabets and other codes)

DECODING ERASURES TO DECODING ERRORS

How is this relevant for error correction?
Theorem: (ASW) Any erasure pattern correctable from erasures in $R M(m, m-r-1)$ is correctable from errors in $R M(m, m-2 r-2)$.

This talk: There is an efficient algorithm that corrects from errors, in $R M(m, m-2 r-2)$, any pattern which is correctable from erasures in $R M(m, m-r-1)$.
(+ extensions to larger alphabets and other codes)

DECODING ERRORS IN RM CODES

Corollary \#1: (low-rate) efficient decoding algo for $\left(\frac{1}{2}-o(1)\right) n$ random errors in $R M\left(m, o(\sqrt{m})\right.$) (min distance is $\left.2^{m-\sqrt{m}}\right)$.

DECODING ERRORS IN RM CODES

Corollary \#1: (low-rate) efficient decoding algo for $\left(\frac{1}{2}-o(1)\right) n$ random errors in $R M\left(m, o(\sqrt{m})\right.$) (min distance is $\left.2^{m-\sqrt{m}}\right)$.

Corollary \#2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in $R M(m, m-r)$ if $r=o(\sqrt{m / \log m})$ (min distance is 2^{r}).

DECODING ERRORS IN RM CODES

Corollary \#1: (low-rate) efficient decoding algo for $\left(\frac{1}{2}-o(1)\right) n$ random errors in $R M\left(m, o(\sqrt{m})\right.$) (min distance is $\left.2^{m-\sqrt{m}}\right)$.

Corollary \#2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in $R M(m, m-r)$ if $r=o(\sqrt{m / \log m})$ (min distance is 2^{r}) .
Corollary \#3: If $R M\left(m,\left(\frac{1+\rho}{2}\right) m\right)$ achieves capacity, efficient decoding algo for $2^{h\left(\frac{1-\rho}{2}\right) m}$ random errors in $R M(m, \rho m)$.

DECODING ERRORS IN RM CODES

Corollary \#1: (low-rate) efficient decoding algo for $\left(\frac{1}{2}-o(1)\right) n$ random errors in $R M\left(m, o(\sqrt{m})\right.$) (min distance is $\left.2^{m-\sqrt{m}}\right)$.

Corollary \#2: (high-rate) efficient decoding algo for $(1-o(1))\binom{m}{\leq r}$ random errors in $R M(m, m-r)$ if $r=o(\sqrt{m / \log m})$ (min distance is 2^{r}).
Corollary \#3: If $R M\left(m,\left(\frac{1+\rho}{2}\right) m\right)$ achieves capacity, efficient decoding algo for $2^{h\left(\frac{1-\rho}{2}\right) m}$ random errors in $R M(m, \rho m)$.

PROOF IDEA

Goal: decode in $R M(m, m-2 r-2)$ every pattern which is correctable from erasures in $R M(m, m-r-1)$.

0	1	0	1	1	1	0	0

PROOF IDEA

Goal: decode in $R M(m, m-2 r-2)$ every pattern which is correctable from erasures in $R M(m, m-r-1)$.

0	1	0	1	1	1	0	0

recall: $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}$ correctable from erasures iff $\left\{\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}\right\}$ are linearly independent.

DUAL POLYNOMIALS

Fact: If $\left\{\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}\right\}$ lin. indep., \exists polys $\left\{f_{1}, \ldots, f_{t}\right\}$ of $\operatorname{deg} \leq r$ such that

$$
f_{i}\left(\mathbf{u}_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

DUAL POLYNOMIALS

Fact: If $\left\{\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}\right\}$ lin. indep., \exists polys $\left\{f_{1}, \ldots, f_{t}\right\}$ of $\operatorname{deg} \leq r$ such that

$$
f_{i}\left(\mathbf{u}_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Proof:

$$
\left(\begin{array}{c}
-\mathbf{u}_{1}^{r}- \\
\vdots \\
-\mathbf{u}_{t}^{r}-
\end{array}\right) \cdot\left(\begin{array}{c}
\mid \\
f_{i} \\
\mid
\end{array}\right)=\mathbf{e}_{i}
$$

DUAL POLYNOMIALS

Fact: If $\left\{\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}\right\}$ lin. indep., \exists polys $\left\{f_{1}, \ldots, f_{t}\right\}$ of $\operatorname{deg} \leq r$ such that

$$
f_{i}\left(\mathbf{u}_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Proof:

$$
\left(\begin{array}{c}
-\mathbf{u}_{1}^{r}- \\
\vdots \\
-\mathbf{u}_{t}^{r}-
\end{array}\right) \cdot\left(\begin{array}{c}
\mid \\
f_{i} \\
\mid
\end{array}\right)=\mathbf{e}_{i}
$$

Solve this system for f_{i}.

DUAL POLYNOMIALS

Fact: If $\left\{\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}\right\}$ lin. indep., \exists polys $\left\{f_{1}, \ldots, f_{t}\right\}$ of $\operatorname{deg} \leq r$ such that

$$
f_{i}\left(\mathbf{u}_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
$$

Proof:

$$
\left(\begin{array}{c}
-\mathbf{u}_{1}^{r}- \\
\vdots \\
-\mathbf{u}_{t}^{r}-
\end{array}\right) \cdot\left(\begin{array}{c}
\mid \\
f_{i} \\
\mid
\end{array}\right)=\mathbf{e}_{i}
$$

Solve this system for f_{i}.
Our approach would be to find those polynomials.

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:
\forall monomial $M, \operatorname{deg} M \leq r$:

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:
\forall monomial $M, \operatorname{deg} M \leq r$:

$$
\sum_{i=1}^{t} f\left(\mathbf{u}_{i}\right)=f(\mathbf{v})=1
$$

(f non-trivial)

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:
\forall monomial $M, \operatorname{deg} M \leq r$:

$$
\begin{array}{lc}
\sum_{i=1}^{t} f\left(\mathbf{u}_{i}\right)=f(\mathbf{v})=1 & (f \text { non-trivial) } \\
\sum_{i=1}^{t}(f \cdot M)\left(\mathbf{u}_{i}\right)=M(\mathbf{v}) & (\mathbf{v} \text { spanned by } U)
\end{array}
$$

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:
\forall monomial $M, \operatorname{deg} M \leq r$:

$$
\begin{array}{lc}
\sum_{i=1}^{t} f\left(\mathbf{u}_{i}\right)=f(\mathbf{v})=1 & (f \text { non-trivial }) \\
\sum_{i=1}^{t}(f \cdot M)\left(\mathbf{u}_{i}\right)=M(\mathbf{v}) & (\mathbf{v} \text { spanned by } U) \\
\sum_{i=1}^{t}\left(f \cdot M \cdot\left(x_{\ell}+\mathbf{v}_{\ell}+1\right)\right)\left(\mathbf{u}_{i}\right)=M(\mathbf{v}) & \\
(\mathbf{v} \text { spanned by vectors in } U \text { that agree } \text { with its } \ell \text {-th coordinate })
\end{array}
$$

ALGORITHM: SOLVE A SYSTEM OF LINEAR EQUATIONS

$U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\} \in \mathbb{F}_{2}^{m}$ (unknown) set of error locations.
Main Claim: For every $\mathbf{v} \in\{0,1\}^{m}, \mathbf{v} \in U \Longleftrightarrow$ the following linear system, in unknown coeffs of degree r poly f, is solvable:
\forall monomial $M, \operatorname{deg} M \leq r$:

$$
\begin{aligned}
& \sum_{i=1}^{t} f\left(\mathbf{u}_{i}\right)=f(\mathbf{v})=1 \quad \quad(f \text { non-trivial) } \\
& \sum_{i=1}^{t}(f \cdot M)\left(\mathbf{u}_{i}\right)=M(\mathbf{v}) \quad(\mathbf{v} \text { spanned by } U) \\
& \sum_{i=1}^{t}\left(f \cdot M \cdot\left(x_{\ell}+\mathbf{v}_{\ell}+1\right)\right)\left(\mathbf{u}_{i}\right)=M(\mathbf{v}) \\
& (\mathbf{v} \text { spanned by vectors in } U \text { that agree with its } \ell \text {-th coordinate }) \\
& \text { If } U \text { lin. indep. and } \mathbf{v}=\mathbf{u}_{i} \in U, f_{i} \text { is a solution. Conversely, if } \\
& \text { solvable and } U \text { lin. indep., can show } \mathbf{v} \in U \text {. }
\end{aligned}
$$

SETTING UP SYSTEM OF EQUATIONS

Every coefficient in the system is of the form $\sum_{i=1}^{t} g\left(\mathbf{u}_{i}\right)$ for poly g of degree $\leq 2 r+1$.

SETTING UP SYSTEM OF EQUATIONS

Every coefficient in the system is of the form $\sum_{i=1}^{t} g\left(\mathbf{u}_{i}\right)$ for poly g of degree $\leq 2 r+1$.

How to compute the coefficients?

SETTING UP SYSTEM OF EQUATIONS

Every coefficient in the system is of the form $\sum_{i=1}^{t} g\left(\mathbf{u}_{i}\right)$ for poly g of degree $\leq 2 r+1$.

How to compute the coefficients?
Input to the algo: $\mathbf{y}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in R M(m, m-2 r-2)$, and \mathbf{e} characteristic vector of $U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}$.

SETTING UP SYSTEM OF EQUATIONS

Every coefficient in the system is of the form $\sum_{i=1}^{t} g\left(\mathbf{u}_{i}\right)$ for poly g of degree $\leq 2 r+1$.

How to compute the coefficients?
Input to the algo: $\mathbf{y}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in R M(m, m-2 r-2)$, and \mathbf{e} characteristic vector of $U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}$.

Syndrome of $\mathbf{y}: E(m, 2 r+1) \cdot \mathbf{y}=E(m, 2 r+1) \cdot \mathbf{e}$.
(recall: $E(m, 2 r+1)$ is PCM of $R M(m, m-2 r-2)$)

SETTING UP SYSTEM OF EQUATIONS

Every coefficient in the system is of the form $\sum_{i=1}^{t} g\left(\mathbf{u}_{i}\right)$ for poly g of degree $\leq 2 r+1$.

How to compute the coefficients?
Input to the algo: $\mathbf{y}=\mathbf{c}+\mathbf{e}$ with $\mathbf{c} \in R M(m, m-2 r-2)$, and \mathbf{e} characteristic vector of $U=\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{t}\right\}$.

Syndrome of $\mathbf{y}: E(m, 2 r+1) \cdot \mathbf{y}=E(m, 2 r+1) \cdot \mathbf{e}$.
(recall: $E(m, 2 r+1)$ is PCM of $R M(m, m-2 r-2)$)

Corollary: The syndrome of \mathbf{y} is a $\binom{m}{\leq 2 r+1}$ long vector α, where $\alpha_{M}=\sum_{i=1}^{t} M\left(\mathbf{u}_{i}\right)$, for every monom $M, \operatorname{deg} M \leq 2 r+1$.

BACK TO BEC

The algorithm works whenever $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ lin. indep., which happens (w.h.p.) whenever $R M(m, m-r-1)$ achieves capacity.

BACK TO BEC

The algorithm works whenever $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ lin. indep., which happens (w.h.p.) whenever $R M(m, m-r-1)$ achieves capacity.

Restating the main question: for which values of $r, \mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent with high probability for $t=(1-o(1))\binom{m}{\leq r}$?

BACK TO BEC

The algorithm works whenever $\mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ lin. indep., which happens (w.h.p.) whenever $R M(m, m-r-1)$ achieves capacity.

Restating the main question: for which values of $r, \mathbf{u}_{1}^{r}, \ldots, \mathbf{u}_{t}^{r}$ are linearly independent with high probability for $t=(1-o(1))\binom{m}{\leq r}$?

SUMMARY

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

SUMMARY

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

- Prove RM achieves capacity for BEC for all degrees

SUMMARY

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

- Prove RM achieves capacity for BEC for all degrees
- RM for BSC: much less is known! (ASW proved it achieves capacity for small rates)

0

$$
m / 2
$$

SUMMARY

Decoding algo for RM far beyond the minimal distance, both for high-rate and low-rate regimes.

Open Problems:

- Prove RM achieves capacity for BEC for all degrees
- RM for BSC: much less is known! (ASW proved it achieves capacity for small rates)

THANK YOU

