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Abstract

Algebraic Natural Proofs is a recent framework which formalizes the type of reasoning used
for proving most lower bounds on algebraic computational models. This concept is similar to and
inspired by the famous natural proofs notion of Razborov and Rudich [RR97] for boolean circuit
lower bounds, but, unlike in the boolean case, it is an open problem whether this constitutes a
barrier for proving super-polynomial lower bounds for strong models of algebraic computation.
From an algebraic-geometric viewpoint, it is also related to basic questions in Geometric Com-
plexity Theory (GCT), and from a meta-complexity theoretic viewpoint, it can be seen as an
algebraic version of the MCSP problem. We survey the recent work around this concept which
provides some evidence both for and against the existence of an algebraic natural proofs barrier,
with an emphasis on the different viewpoints and the connections to other areas.

1 Introduction

Computational complexity theory studies the limits of efficient computation. Computational com-
plexity theorists, however, are as much as obsessed with studying their own limitations. A series
of introspective results, often called “barriers”, shows that many of the successful techniques of
the field are likely to be unable to succeed in tackling its major open problems, such as P vs.
NP. A few of the most famous examples are the relativization barrier of Baker, Gill, and Solovay
[BGS75], which covers diagonalization techniques, such as those used in the proof of the time hier-
archy theorem; the natural proofs barrier of Razborov and Rudich [RR97], which covers the circuit
complexity methods which show that AC0 ( NC1; and the algebrization barrier of Aaronson and
Wigderson [AW09], which covers arithmetization based methods such as those used in the proof of
IP = PSPACE.

These results, and the respective barriers, all apply for boolean models of computation, such
as Turing machines and boolean circuits. There is, however, a parallel universe of algebraic com-
plexity, which studies the limitations of efficient algorithms for computing algebraic problems using
algebraic computational models (we give a background on algebraic complexity in Section 2). Al-
gebraic computation seems more structured, and hence potentially easier to analyze, than boolean
computation. Nevertheless, many of the basic open problems for algebraic computation, such as
the algebraic analog of the P vs. NP question, are as widely open as their boolean counterparts.
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Up until recently, however, we had no excuses for this slow progress, namely, no barrier results for
algebraic complexity.

Since the main computational model in algebraic complexity is the non-uniform algebraic circuit
model (see Section 2 for definitions), the most relevant barrier among the list mentioned above is the
natural proofs barrier of Razborov and Rudich [RR97]. The main insight of Razborov and Rudich
was that most of the existing lower bound proofs against restricted circuit classes do more than
proving lower bounds: they provide efficient algorithms that distinguish random functions from
functions with small circuits. They call proofs with these properties “natural proofs”, and observe
that under the cryptographic assumption that pseudorandom function families exist, such proofs
can’t work for more powerful classes of circuits. Informally, a family of functions is pseudorandom if
no efficient algorithm can distinguish between a random function from the family and a truly random
function. The existence of such families is one of the most basic assumptions in cryptography.

A complete account of natural proofs is available at many sources (such as [RR97] or [AB09]),
and we don’t aim to provide it in this survey. Our main goal is to define and discuss an analog of
this barrier result for algebraic circuits (and, in doing so in Section 3, we will also recall the main
properties of the definition of Razborov and Rudich [RR97]). We do like to stress two key points.
The first is that, unlike other barriers, the natural proofs barrier is based on the (widely believed,
but nevertheless an unproven) assumption that pseudorandom function families exist. Thus, when
defining an algebraic analog, it’s reasonable to base it on complexity theoretic assumptions, and
discuss the veracity of these assumptions. The second key point is the powerful explanatory power
of the natural proofs paradigm: in many senses, the natural proofs barrier explains exactly why
progress in boolean circuit lower bounds has significantly slowed. It is precisely because circuit
classes which are only slightly stronger than those we can prove lower bounds for, are already
believed to be able to compute pseudorandom functions.

The theory of algebraic natural proofs we present in this paper regrettably lies on shakier
assumptions than the boolean natural proofs paradigm, and lacks its powerful explanatory power.
The most important problem we’ll present in this survey is to try to base the barrier on firmer and
more believable assumptions. Nevertheless, it turns out that the meta-mathematical concepts of
arguing about proofs of lower bounds for algebraic circuit models also leads to insights about the
circuit models themselves, and the notion of algebraic natural proofs is tightly connected to many
other important questions arising in algebraic complexity theory, such as the derandomization of
the polynomial identity testing problem, geometric complexity theory, and the complexity of the
minimum circuit size problem. We describe some of these connections in Section 3.

We begin by presenting a basic background on algebraic complexity theory and defining the
main computational model we’ll discuss in this survey.

2 Algebraic Complexity

2.1 Algebraic Circuits

The basic objects of study in boolean computation are boolean functions. There are numerous
computational models and complexity measures that attempt to capture the complexity of com-
puting boolean functions with respect to various resources. Algebraic complexity theory, on the
other hand, studies the resources required for computing algebraic problems using algebraic com-
putational models, and the analogous basic objects of study are multivariate polynomials. Indeed,



common algebraic problems such as computing the determinant or the permanent of a matrix, mul-
tiplying two matrices, or computing the discrete Fourier transform, are all polynomial functions
(or multi-output polynomial maps) in the input variables.

The most general model for algebraic computation is an algebraic circuit. An algebraic circuit
over a field F is a directed, acyclic graph, whose input gates are labeled by inputs variables from
{x1, . . . , xn} or constants from F, and whose internal nodes are labeled by either + or ×. The
circuit computes a polynomial in a natural way. As usual, a circuit whose underlying graph is a
tree is called a formula. The size of the circuit, which is roughly the analog of the running time of
the algorithm, is defined to be the number of edges in the circuit.

We note that this model indeed abstracts almost all of the clever and efficient algorithms known
for algebraic problems: the efficient algorithms for computing the determinant [Csa76, Ber84,
MV99], multiplying matrices [Str69, Blä13] or computing the discrete Fourier transform [CT65] are
all in fact constructions of small algebraic circuits.

As in boolean computation, one can define complexity classes for multivariate polynomials. The
two most important ones are VP, the class of (families of) n-variate polynomials of degree poly(n)
that are computed by poly(n)-sized algebraic circuits; and VNP, which informally captures the class
of all “explicit” polynomials.

A major open problem in algebraic complexity is to show that VP 6= VNP, i.e., to prove super-
polynomial lower bounds on the size of algebraic circuits computing explicit polynomials. This is
the algebraic analog of the P vs. NP problem. When computing a polynomial f using algebraic
circuits, we insist on computing f syntactically, unlike boolean circuits which can compute a boolean
function in many functionally equivalent ways (for example, the polynomial x2 is not the same
polynomial as x over F2, even though the function they compute is the same). Thus, algebraic
circuits are more limited than boolean circuits, and VP vs. VNP is believed to be much easier than
P vs. NP (indeed, in some formal sense the algebraic separation implies the boolean separation
[Bür00]). Yet, there aren’t any strong lower bounds known for general algebraic circuits.

Much like the state of affairs regarding boolean circuits, progress has been made regarding
proving lower bounds for limited models of algebraic computation (we refer to [SY10, Sap16] for
comprehensive surveys on lower bounds for algebraic computational models), but it remains unclear
whether these methods can prove lower bounds for stronger models of computation. Further, it
appears that all of these methods apply equally well to “easy” polynomials, i.e., polynomials that
can be efficiently computed using small algebraic circuits, and it could be the case that this is
intrinsic to the current methods.

2.2 Polynomial Identity Testing

Another important problem in algebraic complexity is the derandomization of the polynomial iden-
tity testing problem. This can be thought of as the algebraic analog of P vs. BPP. The input for
the polynomial identity testing problem is an algebraic circuit C with n inputs, and the task at
hand is to decide whether C computes the identically zero polynomial. The Schwartz-Zippel lemma
implies an easy randomized algorithm for this problem: simply pick a random a ∈ Sn where S ⊆ F
is a large enough subset of the field, and evaluate C at a. Despite the simplicity of the randomized
algorithm, there are no efficient deterministic algorithms for this problem. One explanation for this
is a sequence of results on hardness vs. randomness in the algebraic setting that relates the identity
testing problem to the challenge of proving algebraic circuit lower bounds (see [KS19] for a recent
survey of the many available results).



The two models in which the problem is studied are the white-box model, in which the algorithm
is given the circuit as an input and is allowed to inspect its structure, and the black-box model,
in which the algorithm is only allowed to evaluate the circuit on inputs of its choice (note that
the randomized algorithm above is a black-box algorithm). An efficient deterministic black-box
algorithm is equivalent to constructing a small and explicit hitting set : a hitting set for a class
of N -variate polynomials C is a set H ⊆ FN such that for any non-zero circuit C from the class
C, there is a ∈ H such that C(a) 6= 0. Standard counting arguments imply that (non explicit)
small hitting sets do exist for “small” classes of polynomials, such as the class of polynomials with
polynomial size arithmetic circuits.

A lot of progress has been made regarding identity testing for limited models of algebraic
computation, both in the white-box and black-box models. For details on these results, we refer to
the surveys [SY10, Sax09, Sax14].

3 Algebraic Natural Proofs

In several works ([AD08, Gro15]) it has been observed that almost all the lower bound techniques
in algebraic complexity follow a certain strategy, which is in and of itself algebraic. As a leading
example, consider so-called rank-based methods (which we revisit in Section 5), which include the
partial derivative method and shifted partial derivative method. They work roughly as follows:
given a polynomial f , one constructs a matrix Mf whose entries are determined by the coefficients
of f (and thus typically, the dimension of M is exponential in n, the number of variables of f).
Then, one shows that for any polynomial g computed by a small circuit from a certain class,
rank(Mg) < r, whereas for some hard polynomial h, rank(Mh) ≥ r. By well known properties
of the determinant, this implies that the determinant of some r × r submatrix of Mh is non-zero,
whereas the determinant of the same submatrix of Mg is zero, for every g with a small circuit.

In other words, what the lower bound proof shows is that, for the computational model at
hand, there exists a non-zero N -variate polynomial P (the determinant of the r × r submatrix)
whose variables correspond to the coefficients of n-variate degree-d polynomials, such that for all
polynomials f that are easily computable (in that computational model), P (coeff(f)) = 0, where
coeff(f) denotes the vector of coefficients of f . We now observe that {f : P (coeff(f)) = 0} is a
“natural” property in the sense of Razborov and Rudich [RR97].

1. Usefulness: by definition, if f has a small circuit then P (coeff(f)) = 0.

2. Constructiveness: in the example above, P is a determinant of some matrix whose entries
are determined by the coefficients of f . This matrix is exponentially large in the number of
variables of f , but it is often only polynomially large in the number of coefficients of f . Thus,
P can be efficiently computed when the complexity is measured as a function of the number
of variables of P .

3. Largeness: unlike the case for boolean functions, the largeness property comes here “for free”:
since P (coeff(h)) 6= 0, P is a non-zero polynomial, and thus P (coeff(g)) 6= 0 for a “generic”
polynomial g.

Following this example, we define the concept of algebraic natural proofs, which was introduced
in the works of Forbes, Shpilka, and the author [FSV18] and Grochow, Kumar, Saks, and Saraf



[GKSS17]. These are proofs that use “algebraic distinguishers” (i.e., multivariate polynomials that
are zero on coefficient vectors of “easy” polynomials) that are themselves efficiently computable.

We let F[x1, . . . , xn]≤d denote the set of n-variate polynomials of degree at most d, and set
N =

(
n+d
n

)
. For such a polynomial f , we let coeff(f) ∈ FN denote its vector of coefficients.

Definition 3.1 ([FSV18, GKSS17]). Let C ⊆ F[x1, . . . , xn]≤d be a class of polynomials, and let
D ⊆ F[X1, . . . , XN ]. A non-zero polynomial P ∈ D is a D-natural proof against C, if for all f ∈ C,
P (coeff(f)) = 0

It is now natural to ask how strong are such proofs. Many of the existing lower bounds for alge-
braic models of computation indeed fall within this framework, and provide VP-natural properties
(see, for example, [Gro15]). There are, however, some exceptions, as noted by [FSV18]. One could
wonder how far these techniques can be pushed, which motivates the following question:

Question 3.2. Let D to be the class of N -variate polynomials of degree at most poly(N) with
algebraic circuit of size at most poly(N). Is there a D-natural proof against the class of n-variate
polynomials of degree poly(n) that can be computed by circuit of size poly(n)?

Question 3.2 is essentially the question of whether there are VP-natural proofs against the class
VP, the algebraic analog of P. Having defined what are natural proofs, we turn our attention to
studying the limitations of this framework, i.e., to the question of whether there’s a natural proofs
barrier.

3.1 Succinct Hitting Sets and the Algebraic Natural Proofs Barrier

Recall that the natural proofs barrier of Razborov and Rudich is a conditional statement, which
depends on the existence of strong pseudorandom generators. Such generators are efficiently com-
putable, but also “fool” all efficient distinguishers, which means that there’s no efficient distin-
guishers that can tell apart random functions from efficiently computable functions.

Since the algebraic properties above concern vanishing of polynomials, translating this argument
to the algebraic world results in a natural statement about hitting sets (which were defined in
Section 2.2). That is, suppose there’s a D-natural proof against the class C. Then, there’s some
non-zero P ∈ D which vanishes on H := {coeff(f) : f ∈ C}. Equivalently, H is not a hitting set for
P and consequently for D. Taking the contrapositive, we state the following basic theorem, which
immediately follows from the definitions.

Theorem 3.3 ([FSV18, GKSS17]). Let C ⊆ F[x1, . . . , xn]≤d, and D ⊆ F[X1, . . . , XN ] for N =(
n+d
d

)
. If the set H := {coeff(f) : f ∈ C} is a hitting set for D, then there are no D-natural proofs

against C.

The class H ⊆ FN above has the property that every element in the set, which is an N -
dimensional vector, can be succinctly described using a circuit from C, which is usually a much
smaller description. For example, when d = poly(n) and C = VP, the description is of size poly(n)
whereas N is exponential in n. We call such hitting sets C-succinct hitting sets.

The main conjecture underlying the algebraic natural proofs barrier is that such succinct hitting
sets exist.

Question 3.4. Are there succinct hitting sets? In particular, for N :=
(
n+d
d

)
, are the coefficients

vectors of n-variate polynomials computable by circuits of size poly(n, d) a succinct hitting set
against the class of N -variate polynomials of degree poly(N) computable by circuits of size poly(N)?



A priori, when the underlying field is infinite, a succinct hitting set doesn’t even need to be
finite, and the relation between this question and the standard setting of black box polynomial
identity testing, in which one tries to construct small and explicit hitting sets, might not be clear.
However, completeness results in algebraic complexity theory imply that if there’s any succinct
hitting sets, then there’s an explicit succinct hitting set of quasipolynomial size.

Theorem 3.5 ([FSV18]). Let F be a field. There’s an explicit set H ⊆ FN of quasipolynomial size
with the following property: if the answer to Question 3.4 is positive, then H is a hitting set for the
class of N -variate polynomials of degree poly(N) computable by circuits of size poly(N).

Thus, providing a positive answer to Question 3.4 would require, at the very least, derandomiz-
ing polynomial identity testing, and therefore this question might be difficult to resolve. In Section
4 we review some of the evidence towards positive and negative answers to this question.

3.2 Equations For Varieties and Geometric Complexity Theory

In this section we describe a different point of view regarding algebraic natural proofs, coming from
algebraic geometry. It will be convenient to assume for this section that the underlying field F is
algebraically closed.

Let C be an algebraic complexity class. By thinking of the (coefficient vectors of) elements in
C as points in FN , we can think of C as a subset of FN .

A variety V ⊆ FN is a set of solutions to polynomial equations. That is, V is a variety if there
exist polynomials f1, . . . , ft ∈ F[X1, . . . , XN ] such that V = {X ∈ FN : f1(X) = f2(X) = · · · =
ft(X) = 0} (such sets are more precisely called affine varieties, and are sometimes referred to as
algebraic sets. For simplicity, we will use the name varieties). We also say that f1, . . . , ft define the
variety V . Note that given a variety V , the set of defining polynomials in not unique, but Hilbert’s
basis theorem states that there’s always a finite set of defining polynomials.

For a set C ⊆ FN we define the ideal I(C) ⊆ F[X1, . . . XN ] to be the set of polynomials that
vanish on C. We refer to a non-zero element P ∈ I(C) as an equation for C.

Each variety V corresponds to an I(V ), and conversely, each ideal I ⊆ F[X1, . . . , Xn] corresponds
to a variety

V(I) = {X : F (X) = 0 for all F ∈ I}.

The (Zariski) closure of a set C, denoted C, is the set V(I(C)). In words, the closure of C is
the set of common zeros of all the polynomials that vanish on C. It is also the smallest variety
with respect to inclusion which contains C. By construction, C is a variety, and a polynomial which
vanishes everywhere on C also vanishes on C. We think of C as the variety associated with the class
C.

Over the complex numbers, it is instructive to think of the Zariski closure of C as the usual
Euclidean closure, since for the classes C we consider in this text, it can be shown that these two
notions of closure coincide (see, e.g., Section 4.2 of [BI17]).

In this terminology, observe that an algebraic natural proof is a non-zero polynomial P ∈ I(C).
But note that by showing that P (coeff(g)) 6= 0, we actually prove the slightly stronger statement
that g 6∈ C. That is, algebraic proofs always show a lower bound against the closure of the given
class C. This is an advantage, since the lower bound is stronger, but it might also be a disadvantage,
since, if, for example, it turned out that VP = VNP (this is strongly suspected to be false), then by



definition algebraic proofs can’t separate VP from VNP. Among other reasons, this fact motivates
studying the closure of algebraic complexity classes, although this is not the focus of this survey.

In this formulation, proving lower bounds is an instance of the more general problem of variety
membership testing [BIJL18, BIL+19, BIL+21]. This is the problem of, given a variety V and a
point x, to decide whether x ∈ V . Of course, in order to specify this as an algorithmic problem,
one needs to describe how is the variety V given as an input. For example, if we’re given algebraic
circuits for the polynomials f1, . . . , ft whose zero set defines V , then this problem is easy and is
solved by simply evaluating the circuits on the point x. The common case in varieties related to
algebraic complexity theory, however, is that these polynomials are not known (indeed, finding them
is usually almost as hard as proving a lower bound!), and yet the variety does have a different short
description using other means, e.g., as the closure of the image of an explicitly defined polynomial
map (as a concrete example, for each s, the class of coefficient vectors of polynomials computed by
a circuit of size at most s can be shown to be the image of an explicit polynomial map of degree
poly(s) in poly(s) many variables).

Bläser, Ikenmeyer, Jindal, and Lysikov [BIJL18] and Bläser, Ikenmeyer, Lysikov, Pandey, and
Schreyer [BIL+19] show that some natural varieties (whose membership problem is NP-hard) must
have equations which require circuits of super-polynomial size, unless coNP ⊆ MA, and in particular,
the polynomial hierarchy collapses (which is a much more standard complexity assumption). As
an example, we’ll sketch an instance of this result for tensors with small slice rank.

An n× n× n tensor is a trilinear polynomial T in x1, . . . , xn, y1, . . . , yn, z1, . . . , zn, that is, T =∑
i,j,k ai,j,kxiyjzk (note that here the coefficients vector (ai,j,k) has length n3, which is polynomial

in n, rather than exponential in n).

Definition 3.6. A tensor T has slice rank 1 if there’s a linear function `(·) and a bilinear polynomial
p(·, ·) such that one of the following holds:

1. T = `(x) · p(y, z)

2. T = `(y) · p(x, z)

3. T = `(z) · p(x,y)

For a tensor T , its slice rank is the minimal r such that there exist r tensors of slice rank 1,
T1, . . . , Tr, such that T = T1 + · · ·+ Tr.

We also say that T is of rank r and type (r1, r2, r3) if r1 + r2 + r3 = r and

T =

r1∑
p=1

Tp +

r2∑
q=1

T ′q +

r3∑
s=1

T ′′s

where the Tp’s are of the first type above, T ′q’s are of the second type, and T ′′s ’s are of the third type.

The slice rank of every polynomial is an integer r ∈ [0, n]. It’s not hard to construct explicit
tensors of high slice rank, so this may look like a toy setting for circuit lower bounds. However, we
note that for the closely related problem of tensor rank, it’s a major open problem to construct a
three-dimensional n× n× n tensor whose tensor rank is ω(n), and such a construction will imply
new circuit lower bounds (we define and discuss this further in Section 5).

Going back to slice rank, we present the following two facts from [BIL+19].



Fact 3.7. For every r, the set SRr of coefficient vectors of tensors whose slice rank is at most r is
a variety.

Fact 3.8. The language {(T, r) : the slice rank of T is at most r} is NP-hard.

The above two facts imply that for some r, the non-containment problem for the variety SRr

is coNP-hard. Intuitively, this may suggest that this variety must have equations that are hard to
compute. However, note that each specific equation P can only be used to prove non-containment
for some vectors (those for which P (x) 6= 0), but could potentially vanish on all the hard instances.
Nevertheless, the methodology of [BIJL18, BIL+19] can be used to prove the following.

Theorem 3.9. For some r ∈ [0, n], every set of defining equations for SRr contains an equation
P which requires algebraic circuits of super-polynomial size, unless coNP ⊆ MA and in particular
the polynomial hierarchy collapses.

We remark that a simple dimension argument can be used to show that there are equations for
SRr of degree poly(n) [KV21]. Thus, Theorem 3.9 doesn’t follow trivially from showing that all
equations have extremely high degree.

Proof Sketch. Suppose that SRr ⊆ Fn×n×n can be defined as the set of common zeros of polynomials
P1, . . . , Pm, all of them having polynomial circuit complexity. The main idea is to show that this
assumption implies an MA algorithm for non-containment in SRr, which is a coNP-hard problem.

Given v, the algorithm would expect the prover Merlin to supply a circuit for an equation P
such that P (v) 6= 0. If indeed v 6∈ V , by assumption there exists such P with polynomial circuit
complexity, so Merlin can indeed describe P in using a string of polynomial length3, and evaluating
P (v) can also be done in polynomial time.

The only challenge is for the verifier to check that P is indeed an equation for SRr. This
is done as follows. For each (r1, r2, r3) such that r1 + r2 + r3 = r, we define a polynomial map
Γr1,r2,r3 : Fm → Fn×n×n (where m = (n2+n)(r1+r2+r3)) of degree 2 and poly(n) size circuit, whose
image is precisely all the coefficient vectors of tensors of rank r and type (r1, r2, r3). Given such
a family of maps, checking that P is indeed an equation amounts to verifying that the composed
circuit P (Γr1,r2,r3(x)) is identically zero for all (r1, r2, r3). This verification can be done by Arthur
in randomized polynomial time, as this is simply an instance of polynomial identity testing.

It remains to describe the construction of Γr1,r2,r3 . The coefficient vector of a “generic” tensor of

slice rank 1 of the form `(x)p(y, z) =
∑

i,j,k uivj,kxiyjzk is given by the map Γ1 : Fn2+n → Fn×n×n

defined as Γ1(u,v)(i,j,k) = uivj,k. Similarly one may define Γ2 and Γ3 for the other two types of
tensors of slice rank 1 by merely changing the indexing. The final map Γr1,r2,r3 is defined as

(Γr1,r2,r3)(i,j,k) =

r1∑
p=1

Γ1
p +

r2∑
q=1

Γ2
q +

r3∑
s=1

Γ3
s

where all the Γb
c’s are defined over disjoint sets of variables. By definition, every tensor of type

(r1, r2, r3) is in the image of Γr1,r2,r3 .

Refs. [BIJL18, BIL+19] give several other natural varieties for which this type of theorem holds.

3Strictly speaking, over infinite fields (such as C), one has to also assume that the coefficients in the circuit are
rationals of small enough size so that they have short bit complexity. We ignore this technical detail.



3.3 Algebraic Minimum Circuit Size Problem

We now describe a different point of view regarding algebraic natural proof, as the natural analog
of the famous Minimum Circuit Size Problem (MCSP) from boolean complexity.

Recall that the Minimum Circuit Size Problem is the problem of, given as input the truth table
of a boolean function f : {0, 1}n → {0, 1} and a parameter s, to decide whether f can be computed
by a circuit of size at most s. This problem turns out to be immensely important in the study of
boolean computational classes and the relations between them, and it is an active object of research
whose complexity is far from understood (see [All20] for a recent survey).

Under cryptographic assumptions, MCSP doesn’t have a polynomial time algorithm. Never-
theless, researchers have struggled with classifying its complexity. For example, it’s not known
to be NP-hard, and a proof of it being NP-hard will imply new circuit lower bounds, and thus is
might be difficult to prove that it’s NP-hard [KC00, MW17]. It’s also possible to show (uncon-
ditionally) that it’s not NP-hard under some limited notions of reductions that suffice for many
other NP-hardness results [MW17, All20]. Weak circuit lower bounds on MCSP also imply strong
separations of complexity classes [OS18, CJW20].

A first attempt in defining an algebraic analog of MCSP for algebraic complexity is to consider
the boolean problem of deciding, given as input the list of coefficients of a polynomial and a size
parameter s, whether the input polynomial has an algebraic circuit of size at most s. That is, in
this version the input is an algebraic object but the algorithm requested is an algorithm in the
standard, boolean model (i.e., a Turing machine).

While it’s possible to translate some of the results mentioned above to this setting, a big part
of what makes MCSP so unique is its “meta complexity” nature, where the problem encodes the
complexity of an object in the same model of the algorithm deciding the problem. Thus, in the
algebraic case, it is more natural to require the algorithm as well to be a non-zero algebraic circuit
which vanishes on (coefficient vectors of) polynomials whose circuit size is small.

This naturally leads us back to the natural proofs and equations for varieties formulations.
Namely, pick s and d as some fixed functions of n (e.g., s = d = n10). The complexity of the
“algebraic MCSP” question with respect to n, d and s is asking what is the minimal size of a
circuit for an N -variate polynomial which vanishes on all inputs which are coefficient vectors of
polynomials with circuits of size at most s (as usual N =

(
n+d
d

)
).

Much like MCSP, it is interesting to understand the implications of “algebraic MCSP” being
easy or hard (i.e., whether we should expect the circuit size to be polynomial in N or not).

Question 3.10. What are the implications of the hardness or easiness of “algebraic MCSP”?

We have already noted in Theorem 3.5 that (informally) the hardness of the algebraic MCSP
problem implies derandomization of polynomial identity testing. Another partial answer to Ques-
tion 3.10 was given by Kumar and the author [KV21] who used a technique similar to the one from
Theorem 3.9 to show that in the setting of algebraic circuits computing linear transformations, if
the corresponding version of algebraic MCSP is easy, then this implies an efficient construction
with an NP oracle of linear transformations such that any algebraic circuit computing them must
be of large size.



4 Is There an Algebraic Natural Proofs Barrier?

4.1 Succinct Hitting Sets for Restricted Models

As mentioned above, the barrier for the existence for algebraic natural proofs suggested by [FSV18,
GKSS17] is the existence of succinct hitting sets. Proving their existence unconditionally will imply
a derandomization of the polynomial identity testing and therefore also lower bounds, and is thus
considered a difficult problem. However, there are restricted models of algebraic computation for
which it is known how to derandomize the identity testing problem. Ref. [FSV18] shows that many
of these constructions can be in fact made succinct.

The details of most constructions are somewhat technical, and the proofs for their correctness
rely on previous works. Therefore, we only show in this survey a simple representative example: a
succinct hitting sets for sparse polynomials.

A polynomial F ∈ F[X1, . . . , XN ] has sparsity s if F can be written as a sum of at most s
monomials. This is a natural restricted class of polynomials for which many black box identity
testing algorithms are known (see, e.g., [SY10, Sax09]).

In this section we’ll show that there’s a succinct hitting sets H ⊆ FN for this class. For
simplicity, we’ll assume N = 2n and we’ll think of vector in FN as representing coefficient vectors
of multilinear n-variate polynomials. Each vector H will be a coefficient vector of a polynomial
f ∈ F[x1, . . . , xn] computable by a depth 3 circuits of size polylog(s). In the natural case where
s = poly(N) this size is polynomial in n.

To present this construction, we first start with the following lemma, showing how to hit poly-
nomials that have a non-zero monomials of low support. The support of a monomial is the number
of distinct variables appearing in the monomial with positive degree. For a vector a ∈ FN we
denote by ‖a‖0 its Hamming weight, i.e., the number of coordinates in which it’s non-zero.

Lemma 4.1. Let F ∈ F[X1, . . . , XN ] be a polynomial such that there exists a non-zero monomial
in {X1, . . . , XN}, with support of size at most k, whose coefficient in F is non-zero. Let

Hk =
{
a ∈ FN : ‖a‖0 ≤ k

}
.

Then there’s a vector b ∈ Hk such that F (b) 6= 0.

Proof. Let M be the corresponding monomial in F , and suppose without loss of generality that
M = Xi1

1 Xi2
2 · · ·X

ik
k . Observe that under the restriction Xk+1 = Xk+2 = · · · = Xn = 0, F

remains a non-zero polynomial (as the monomial M , which has a non-zero coefficient, survives this
restriction, and can’t be cancelled by any other monomial). Thus there exists a vector b whose last
n− k coordinates are zero (and in particular b ∈ Hk) such that F (b) 6= 0.

Every vector b ∈ Hk is a coefficient vector of a polynomial f ∈ F[x1, . . . , xn] with at most k
non-zero monomials, and thus f can be computed by a depth-2 circuit of size poly(k, n). For our
setting we would want to set k = polylog(s), but it’s clearly not true that every s-sparse polynomial
F ∈ F[X1, . . . , XN ] has a non-zero monomial of support polylog(s). It turns out, however, that
such a statement is true when considering F (X1 + 1, . . . , XN + 1).

Lemma 4.2 ([For15, GKST17, FSV18]). Let F ∈ F[X1, . . . , XN ] be a polynomial with at most s
monomials. Then the polynomial F (X1 + 1, . . . , XN + 1) has a monomial of support at most log s.



The observation that 1 := (1, . . . , 1) is the coefficient vector of the multilinear polynomial∏n
i=1(xi + 1) suggests the following construction of a succinct hitting set for s-sparse polynomials.

Theorem 4.3. Let N = 2n. Let C be the class of n-variate polynomials computed by a depth 3
circuits of size poly(n, log s). There’s a C-succinct hitting set for the class D of s-sparse N -variate
polynomials.

Proof. Consider the set H := {1 + a : a ∈ Hlog s} (where Hlog s is as defined in Lemma 4.1). We
first show H is a hitting set. Let G = F (X1 + 1, . . . XN + 1). By Lemmas 4.2 and 4.1, there’s
b ∈ Hlog s such that G(b) 6= 0, and therefore F (1 + b) = G(b) 6= 0.

Further, each element in H is the coefficient vector of a multilinear polynomial f ∈ F[x1, . . . , xn]
of the form

∏n
i=1(xi+1)+g(x1, . . . , xn) where g has at most log s monomials. Thus, f is computable

by a depth 3 circuit of size poly(n, log s).

Corollary 4.4. Let C denote the class of n-variate multilinear polynomials with depth 3 circuits of
size at most poly(n). Any equation for C must have sparsity which is super-polynomial in N := 2n.
Equivalently, letting D denote the class of N -variate polynomial with sparsity at most poly(N),
there are no D-natural proof against C.

Ref. [FSV18] contains many more examples of such succinct hitting sets for various models.
Since they are somewhat technical in nature and rely extensively on previous work, we refer to
[FSV18] for the details.

4.2 Equations with Small Circuits for Bounded Coefficients Polynomials

We now turn to a result that can be understood as an argument in favor of the existence of
algebraic natural proofs for algebraic circuits (that is, the non-existence of an algebraic natural
proofs barrier).

In Ref. [CKR+20], Chatterjee, Kumar, Ramya, Saptharishi, and Tengse prove the following:

Theorem 4.5 ([CKR+20]). Let c > 0 be an arbitrary constant.

1. Let F be a fixed finite field of constant size. For N =
(
n+nc

n

)
, there exists an N variate

polynomial P ∈ F[X1, . . . , XN ] of degree poly(N), which can be computed by a circuit of size
poly(N), such that for every n-variate polynomial f over F of degree at most nc that can be
computed by a circuit of size at most nc, P (coeff(f)) = 0. Further, there exists an n-variate
polynomial h over F of degree at most nc such that P (coeff(h)) 6= 0.

2. For N =
(
n+nc

n

)
, there exists an N variate polynomial P ∈ Q[X1, . . . , XN ], which can be

computed by a circuit of size poly(N), such that for every n-variate polynomial f over Q of
degree at most nc that can be computed by a circuit of size at most nc and has coefficients in
the set {0,±1}, P (coeff(f)) = 0. Further, there exists an n-variate polynomial h over Q of
degree at most nc with coefficients in {0,±1} such that P (coeff(h)) 6= 0.

That is, Ref. [CKR+20] shows the existence of efficient “algebraic distinguishers” for circuit
lower bounds for polynomials with small coefficients, which is an extremely interesting class of
polynomials containing most interesting polynomials such as the permanent or determinant.

We note that unlike the case in the usual setting for algebraic natural proofs, the “further” part
in both theorems does not follow automatically from P being a non-zero polynomial and requires



an extra argument. For example, the non-zero polynomial X1 · (X1 − 1) · (X1 + 1) is a non-zero
polynomial which vanishes on all vectors in {0,±1}N . Further, these constructions are only able
to show the existence of a non-zero h such that P (coeff(h)) 6= 0, but it’s unknown whether h is in
VNP, and thus it’s not clear yet which separations of complexity classes such constructions give. In
fact, the proof shows the existence of a large set of such polynomials, but not large enough to be
a significant enough fraction of the set of all polynomials from the relevant domain so as to satisfy
the usual “largeness” condition for natural proofs. To summarize, this construction doesn’t answer
Question 3.4, but it could hint that, even if algebraic natural proofs do not exist, there are still
“constructive” ways to prove lower bounds for interesting polynomials.

We’ll sketch a proof of the first item of Theorem 4.5.

Proof Sketch of Theorem 4.5. Suppose for simplicity that F = F2. Let s = nlogn (s can be chosen
to be any super-polynomial function of f which grows slowly enough). Let K be an extension of
F of size O(n2c). Using counting arguments, it can be proved that there’s a hitting set H ⊆ Kn

of size O(s2) for all n-variate polynomials of degree at most nc that can be computed by a circuit
of size at most s. In order to convey the main ideas of the proof, let’s further assume that H is a
subset of Fn and not merely Kn (we’ll remark at the end how to handle the general case).

The polynomial P will be a product of 2 polynomials. The first is a polynomial computing the
OR function over N variables, which is a degree N polynomial which can clearly be computed by
a circuit of size O(N). The second is a polynomial Q such that Q(X) = 0 if and only if the vector
X describes a coefficient vector of a polynomial which vanishes on H. Thus, by assumption on H,
the non-zeros of P are coefficient vectors of non-zero polynomials that don’t vanish on H, i.e., have
circuit size at least s.

We construct Q as follows. Q = 1−
∏

a∈H(1−Qa), where Qa(X) is a polynomial which evaluates
to 0 if and only if X describes the coefficient vector of a polynomial that evaluates to 0 at the point
a. This can be checked by a polynomial of degree 1, by simply taking the inner product between
the input variables and the evaluation vector of a on all monomials on n variables of degree at most
nc, of which there are exactly N . The circuit complexity of Q is O(N · |H|).

Finally, we’d like to show that P is not identically zero on FN . Note that each constraint of the
form g(a) = 0 for a ∈ H is a homogeneous linear constraint on the coefficient of g. Since |H| � N ,
this linear system has a non-zero solution, that is, there exists a non-zero h such that h vanishes
on H. Such h would satisfy P (coeff(h)) 6= 0.

As mentioned in the beginning of the proof, we can’t really assume that H ⊆ Fn but rather we
have to use the fact that H ⊆ Kn. This is done in a straightforward manner by treating elements
of K as vectors over F of length O([K : F]) = O(log n) and modifying P accordingly. This incurs a
small increase in the degree of P and circuit size of P , but this increase is rather meaningless with
respect to the relevant parameters.

4.3 A Natural Proofs Barrier for VNP

As described earlier, we would have liked to establish the natural proofs barrier on firmer grounds—
ideally, on the most basic assumption in algebraic complexity theory, that VP 6= VNP. In Ref.
[KRST20], Kumar, Ramya, Saptharishi, and Tengse obtain a related result, but for the class VNP
itself: that is, they prove that if the Permanent polynomial requires circuits of size 2n

ε
for some

fixed ε > 0, then any polynomial family P that vanishes on all inputs of the form coeff(g) for
g ∈ VNP must have super-polynomial circuit size.



The proof of Kumar, Ramya, Saptharishi, and Tengse uses the equivalence between natural
proofs and succinct hitting sets as in Section 3.1. A well known hardness vs. randomness theorem
of Kabanets and Impagliazzo [KI04] (based on ideas due to Nisan and Wigderson [NW94] in the
context of boolean derandomization) gives an explicit conditional construction of a hitting set for
VP (under the assumption that the permanent requires exponential size algebraic circuits). In Ref.
[KRST20], it is shown that this construction can be made VNP-succinct, that is, each element of
the hitting set is a coefficient vector of a polynomial in VNP. Using the equivalence between natural
proofs and succinct hitting sets, the conclusion now directly follows.

While VNP-succinctness is presumably much weaker then VP-succinctness, this result has several
interesting corollaries. The first is a separation of the bounded coefficient setting, which we have
dealt with in Section 4.2, from the general setting. While we have sketched a proof of Theorem
4.5 for polynomials in VP, an analogous theorem can be generalized to hold for polynomials with
bounded coefficients from VNP without much extra work. That is, there’s an efficiently computable
polynomial which vanishes on all coefficient vectors of polynomials in VNP with bounded integer
coefficients. However, the result of Ref. [KRST20] shows that it’s unlikely that this continues to
hold when removing the condition about bounded integer coefficients.

A second interesting corollary is the observation that, assuming that the permanent requires
exponential size circuits, and further that natural proofs for VP do exist, then any such natural
proof would automatically separate VP from VNP.

5 An Unconditional Barrier for Rank Based Techniques

We now describe a result of a different flavor, due to Efremenko, Garg, Oliveira, and Wigderson
[EGOW18], which shows an unconditional barrier for proving lower bounds for a more limited
class of proof methods which they call rank based methods. These methods, mentioned in Section
3 are more limited than general algebraic natural proofs, but are still quite general and common
techniques for proving lower bounds for algebraic circuits.

Before defining precisely rank based methods, we’ll define one model for which the barrier
applies. Recall that a 3 dimensional n×n×n tensor is a trilinear polynomial of the form T (x,y, z) =∑n

i,j,k=1 ai,j,kxiyjzk. The tensor rank of a tensor T is the minimal r such that

T =
r∑

i=1

`i,1(x) · `i,2(y) · `i,3(z)

where for every i ∈ [r] and j ∈ [3], `i,j is a linear function. It is easy to show, using counting
arguments, that most 3-dimensional n × n × n tensors have rank Ω(n2), and yet, it is an open
problem to show an explicit tensor whose rank is super-linear in n. It is also not hard to show (see
[SY10, Sap16]) that a lower bound of s on the tensor rank of T implies a lower bound of s on any
algebraic circuit computing T , and thus this is a very natural and interesting complexity measure.

A rank based method for lower bounds on tensor rank is a linear map L : Fn3 → Fm×m

such that for every rank one tensor T0, rank(L(coeff(T0))) ≤ r, whereas for some tensor T ,
rank(L(coeff(T ))) ≥ C. Since L is a linear map and the rank function is subadditive, such a
map L will imply a lower bound of C/r on the tensor rank of T .

Rank methods were indeed successful in proving lower bounds for many restricted models of
algebraic computation. However, as Ref. [EGOW18] shows, such methods are incapable of proving



super-linear lower bounds on the rank of three-dimensional tensors (the result of [EGOW18] is
more general and applies to d-dimensional tensors and for other models such as Waring rank, but
for the sake of simplicity, we only present this special case in this survey). A barrier for such a
method would show, in the above notation, that for any linear map L, if rank(L(coeff(T0))) ≤ r
for every rank one tensor T0, then for any tensor T , rank(L(coeff(T ))) ≤ O(nr). This implies that
the method can’t prove a lower bound better than Ω(n). Such a statement is shown in [EGOW18].

Theorem 5.1 ([EGOW18]). No rank based method is capable of proving a super-linear tensor rank
lower bound for three dimensional tensors.

The proof of Theorem 5.1 uses the following lemma, which relates the rank of a “symbolic”
matrix of polynomials M(w) over the field F(w) to its rank of evaluations M(a) over F. Using the
characterization of rank as the largest submatrix whose determinant is non-zero, the lemma is an
immediate corollary of the Schwartz-Zippel lemma.

Lemma 5.2. Let M(w) be a k×m matrix of n-variates polynomials in variables w over an infinite
field F. Then

rankF(w)M(w) = max {rankFM(a) : a ∈ Fn}.

Proof Sketch of Theorem 5.1. We wish to show that for any linear map L : Fn3 → Fm×m, if for
every rank 1 tensor T0 := `1(x) · `2(y) · `3(z) it holds that rank(L(coeff(T0))) ≤ r, then for every
tensor T , rank(L(coeff(T ))) ≤ O(nr).

We’ll once again take the approach of thinking about the coefficients of T0 as symbolic variables
and consider the map L as a polynomial map in those variables. That is, suppose T0 = (

∑n
j=1 c1,jxi)·

(
∑n

j=1 c2,jyj) · (
∑n

j=1 c3,jzj) is a “generic” rank 1 tensor, where ct = (ct,1, . . . , ct,n) for t ∈ [3] are
thought of as vectors of indeterminates.

We can write
L(coeff(T0)) =

∑
i,j,k∈[n]

Ai,j,k · c1,ic2,jc3,k, (1)

that is, L(coeff(T0)) is a polynomial in c = (c1, c2, c3) with matrix coefficients: Ai,j,k are m ×m
matrices over F. Note that this polynomial itself is trilinear in c = (c1, c2, c3). L(coeff(T0)) can
also be thought of as a matrix M(c) of polynomials in variables c. By assumption, for every a ∈ Fn,
rankF(M(a)) ≤ r, which implies by Lemma 5.2 that rankF(c)M(c) ≤ r. Therefore,

M(c) =

r∑
i=1

fig
T
i

for vectors fi,gi ∈ (F(c))m. That is, the entries of fi,gi are in the field of rational functions in
the variables c over F. Since the entries of M(c) are trilinear forms in (c1, c2, c3), by standard
homogenization and multilinearization techniques we can ensure that

M(c) =
R∑
i=1

f̃ig̃
T
i (2)

for R = O(r), where now f̃i, g̃i are vectors of polynomials that “respect” the trilinear structure of
M(c): namely, for every i ∈ [R] there is some j ∈ [3] such either f̃i is linear in cj and g̃i is bilinear



in the two other sets of variables {ck : k ∈ [3] \ {j}}, or g̃i is linear in cj and f̃i is bilinear in the
two other sets of variables.

Recall that an m×k matrix of polynomials B(c) can also be thought of as a polynomial in c with
coefficients from Fm×k. We’ll denote by C(B) the subspace of Fm×k spanned by these coefficients.
For example, C(M) is the span of the matrices Ai,j,k appearing in (1).

Since a linear function has n coefficients, it can be shown that for every B ∈ C(f̃ig̃T
i ), where

f̃i, g̃i are as in (2), rank(B) ≤ n. This implies by subadditivity that for every B ∈ C(M(c)),
rank(B) ≤ nR = O(nr).

We’ll finish by showing that for every tensor T it holds that L(coeff(T )) ∈ C(M(c)). Indeed,
this is true for rank one tensors as

L

coeff

 n∑
j=1

a1,jxj

 ·
 n∑

j=1

a2,jyj

 ·
 n∑

j=1

a3,jzj

 = M(a),

and thus also true for T , because T can be written as a sum of rank 1 tensors, and L is a linear
function.

6 Summary and Discussion

In thus survey, we presented the concept of algebraic natural proofs and discussed its many facets.
We hope to have convinced the reader that (like many other similar cases in complexity theory),
what started as a meta-mathematical quest to understand our failure in proving strong lower bounds
for algebraic models of computation, turned out to be relevant to studying the model itself and to
provide insight on algebraic computation.

We finish by stressing the two problems which we see as most important in this area. The
first is to provide evidence towards resolving Question 3.2, i.e., basing the algebraic natural proofs
barriers on standard complexity theoretic or cryptographic assumptions. The second is the more
open-ended Question 3.10, which asks what are the complexity theoretic implications of either the
existence or non-existence of the algebraic natural proofs barrier.
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