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Abstract

In this paper we prove results regarding Boolean functions with small spectral norm (the

spectral norm of f is ‖f̂‖1 =
∑
α |f̂(α)|). Specifically, we prove the following results for functions

f : {0, 1}n → {0, 1} with ‖f̂‖1 = A.

1. There is an affine subspace V of co-dimension at most A2 such that f |V is constant.

2. f can be computed by a parity decision tree of size at most 2A
2

n2A. (a parity decision
tree is a decision tree whose nodes are labeled with arbitrary linear functions.)

3. f can be computed by a De Morgan formula of size O(2A
2

n2A+2) and by a De Morgan
formula of depth O(A2 + log(n) ·A).

4. If in addition f has at most s nonzero Fourier coefficients, then f can be computed by a
parity decision tree of depth at most A2 log s.

5. For every ε > 0 there is a parity decision tree of depth O(A2 + log(1/ε)) and size 2O(A2) ·
min{1/ε2, log(1/ε)2A} that ε-approximates f . Furthermore, this tree can be learned (in the
uniform distribution model), with probability 1 − δ, using poly(n, exp(A2), 1/ε, log(1/δ))
membership queries.

All the results above (except 3) also hold (with a slight change in parameters) for functions
f : Znp → {0, 1}.
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1 Introduction

The Fourier transform is one of the most useful tools in the analysis of Boolean functions. It
is a household name in many areas of theoretical computer science: Learning theory (cf. [KM93,
LMN93, Man94]), Hardness of approximation (cf. [H̊as01]), Property testing (cf. [BLR93, BCH+96,
GOS+11]), Social choice (cf. [KKL88, Kal02]), and more. The reader interested in the Fourier
transform and its applications is referred to the book [O’D14].

A common theme in the study of Fourier transform is the question of classifying all Boolean
functions whose Fourier transforms share some natural property. For example, Friedgut proved that
Boolean functions that have small influence are close to being juntas (i.e. functions that depend on a
small number of coordinates) [Fri98]. Friedgut, Kalai and Naor proved that Boolean functions whose
Fourier spectrum is concentrated on the first two levels are close to dictatorships (i.e. functions that
depend on at most one coordinate). In [ZS10, MO09] it was conjectured that a Boolean function that
has a sparse Fourier spectrum (i.e. that has only s nonzero Fourier coefficients), can be computed
by a parity decision tree (for short we denote parity decision tree by ⊕-DT) of depth poly(log s).
Recall that in a ⊕-DT nodes are labeled by linear functions (over Z2) rather than by variables. It
is well known that a function that is computed by a depth d ⊕-DT has sparsity at most exp(d) (see
Lemma 2.5), so this conjecture implies a (more or less) tight result. This conjecture was raised in
the context of the log-rank conjecture in communication complexity and, if true, it would imply
that the log-rank conjecture is true for functions of the form F (x, y) = f(x⊕ y), for some Boolean
function f .

In this paper we are interested in the structure of functions that have small spectral norm.
Namely, in Boolean functions f : {0, 1}n → {0, 1} that satisfy

‖f̂‖1
def
=
∑
α

|f̂(α)| ≤ A , (1)

for some number A that may depend on the number of variables n (for definitions see Section 2).
Such functions were studied in the context of circuit complexity (cf. [Gro97]) and, more notably,
in learning theory, where it is one of the most general family of Boolean functions that can be
learned efficiently [KM93, Man94, ABF+08]. In particular, Kushilevitz and Mansour proved that
any Boolean function satisfying (1) can be well-approximated by a sparse polynomial [KM93]. This
already gives some rough structure for functions with small spectral norm; however, one may ask
for a more refined structure that captures the function exactly. Green and Sanders were the first
to obtain such a result (and until this work this was the only such result). They proved that if f

satisfies Equation (1) then it can be expressed as a sum of at most 22
O(A4)

characteristic functions
of subspaces, that is,

f =
22
O(A4)∑
i=1

±1Vi , (2)

where each Vi is a subspace. Thus, when A is constant this gives a very strong result on the
structure of such a function f . This result can be seen as an inverse theorem, as it is well known
and easy to see that the spectral norm of the characteristic function of a subspace is constant. Thus,
[GS08a] show that in general, any function with a small spectral norm is a linear combination of
a (relatively) small number of such characteristic functions. Of course, ideally one would like to
show that the number of functions in the sum is at most poly(A) and not doubly exponential in A.

It is possible that another classification of Boolean functions with small spectral norm could be
achieved using decision trees, or more generally, parity decision trees. It is not hard to show that if

1



a Boolean function g is computed by a ⊕-DT with s leaves then the spectral norm of g is at most s
(see Lemma 2.5). Generally, this inequality is far from being tight: the AND function, for example,
has constant spectral norm but requires ⊕-DT of depth n. However, since the spectral norm of
a Boolean function is bounded by the square root of the number of nonzero Fourier coefficients,
and in relation to the conjecture of [ZS10, MO09] which was mentioned above, it is an interesting
question to obtain upper bounds on the size and depth of a ⊕-DT in terms of those measures. We
note that the result of [GS08a] does not yield such a structure. Indeed, if we were to represent
the function given by Equation (2) as a ⊕-DT then, without knowing anything more about the
function, we do not see a more efficient representation than the brute-force one that yields a ⊕-DT

of size n2
2O(A4)

.
Another interesting question concerning functions with small spectral norm comes from the

learning theory perspective. As mentioned above, Kushilevitz and Mansour proved that for any

Boolean function satisfying Equation (1) there is some sparse polynomial g =
∑A2/ε

i=1 f̂(αi)χαi(x)
(where the coefficients in the summation are the A2/ε largest Fourier coefficients of f in absolute
value) such that Prx[f(x) 6= sgn(g(x))] ≤ ε. Thus, their learning algorithm always outputs as its
hypothesis the function sgn(g(x)), even in the case where f is computed by a small decision tree
or a small ⊕-DT. It is more desirable to output a hypothesis coming from the same complexity
class as f , i.e. to output a decision tree or a ⊕-DT. In the general context of PAC learning decision
trees (under arbitrary distributions), a hardness result of [ABF+08] shows that under reasonable
complexity assumptions, one cannot hope to output a small decision tree approximating f . In the
special case of the uniform distribution model, a refinement of the question might be to try and
output the smallest tree one can find for a function approximating f . For example, the hypothesis
which the Kushilevitz-Mansour algorithm outputs,

sgn(g) = sgn

A2/ε∑
i=1

f̂(αi)χαi(x)

 , (3)

can be computed by a ⊕-DT of depth O(A2/ε) simply by querying χαi for all i. Even when A
is a constant and ε is polynomially small (in the number of variables) this does not give much
information. Thus, a natural question is to try and find a better representation for this range of
parameters.

1.1 Our results

Our first result identifies a local structure shared by Boolean functions with small spectral norm.

Theorem 1.1. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A. Then there is an affine subspace
V ⊂ {0, 1}n of co-dimension at most A2 such that f is constant on V .

We note that the proof of [GS08a] does not imply the existence of such an affine subspace V of
such a high dimension. Our next result gives a ⊕-DT computing f .

Theorem 1.2. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A. Then f can be computed by a
⊕-DT of size at most 2A

2
n2A.

In particular, the theorem implies that f =
∑2A

2
n2A

i=1 ±1Vi , where each Vi is a subspace.

Known connections between parity decision trees and De Morgan formulas and between formula
size and depth, along with Theorem 1.2, imply the following theorem. We give its proof, along with
the formal definitions, in Section 4.
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Theorem 1.3. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A. Then f can be computed by a
De Morgan formula of size O(2A

2 ·n2A ·n2) and by a De Morgan formula of depth O(log(n)·A+A2).

Another result settles the conjecture of [ZS10, MO09] for the case of sparse Boolean functions
with small spectral norm. Here we use spar(f) to denote the number of vectors α ∈ Zn2 such that
f̂(α) 6= 0.

Theorem 1.4. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A and spar(f) = s. Then f can be
computed by a ⊕-DT of depth at most A2 log(4s/A2).

Thus, if the spectral norm of f is constant (or poly(log s)), Threorem 1.4 settles the conjecture
affirmatively. The conjecture is still open for the case where the spectral norm of f is large
(generally, it can be as large as

√
s).

Our last result (for functions over the Boolean cube) fits into the context of learning theory
and provides a bound on the depth of a ⊕-DT approximating a function with a small spectral
norm. Here, the distance between two Boolean functions is measured with respect to the uniform
distribution, namely, dist(f, g) = Prx∈{0,1}n [f(x) 6= g(x)].

Theorem 1.5. Let f : {0, 1}n → {0, 1} be such that ‖f̂‖1 = A. Then for every δ, ε > 0 there is
a randomized algorithm that, given a query oracle to f , outputs (with probability at least 1 − δ) a
⊕-DT of depth O(A2 + log(1/ε)) and size 2O(A2) min{1/ε2, log(1/ε)2A}, which computes a Boolean
function gε such that dist(f, gε) ≤ ε. The algorithm runs in time polynomial in n, exp(A2), 1/ε and
log(1/δ).

Thus, when A is a constant and ε is polynomially small, the depth is O(log n) and the size is only
poly-logarithmic in n. This greatly improves upon the representation guaranteed by Equation (3).
If one insists on outputting a ⊕-DT, then, for all ranges of parameters, the tree that we obtain is
much smaller than the tree guaranteed by Equation (3).

We also prove analogs of the theorems above for functions f : Znp → {0, 1} having small spectral
norm, where p is any fixed prime number. Namely, in the theorems above one could instead talk
of f : Znp → {0, 1} and obtain essentially the same results.1 Theorems 5.7, 5.8, 5.10 and 5.11 are
the Zp analogs to Theorems 1.1, 1.2, 1.4 and 1.5, respectively. We note that in [GS08b] Green and
Sanders extended their result to hold for functions mapping an abelian group G to {0, 1}, obtaining
the same bound as in [GS08a], so our result for functions on Znp could be seen as an analog to their
result for such groups.

1.2 Comparison with [GS08a]

Comparing Theorem 1.2 to Equation (2) (that was proved in [GS08a]), we note that while Equa-
tion (2) does not involve the number of variables (i.e. the upper bound on the number of subspaces
only involves A), our result does involve n. On the other hand, we give a more refined structure –
that of a parity decision tree – which is not implied by Equation (2) (see also the discussion above).
Moreover, when A ≥ C · (log log n)1/4 for some large enough constant C, our bound is much better
than the one given in Equation (2). 2

1Of course, one would have to speak about the analog of a ⊕-DT for the case where the inputs come from Znp .
2Over Zn2 , [GS08a] express their result in terms of sum of ±-indicators of subspaces, and not affine subspaces.

However, this distinction has no asymptotic significance on the number of summands when dealing with functions
over Zn2 , because any indicator of an affine subspace is a difference of two indicators of subspaces. This trick is in
fact the way [GS08a] obtain a sum of indicators of subspaces.
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Our proof technique is also quite different than that of [GS08a]. Their proof idea is to represent
f as f = f1 + f2 where the Fourier supports of f1 and f2 are disjoint, and such that f1 and f2 are
close to being integer valued and have a somewhat smaller spectral norm. Then, using recursion,
they represent each fi as a sum of a small number of characteristic functions of subspaces. In
particular, Green and Sanders do not restrict their treatment to Boolean functions but rather
study functions that at every point of the Boolean cube obtain a value that is almost an integer.
Thus, they prove a more general result, namely, that fZ, the integer part of f , can be represented in
the form of Equation (2). We on the other hand only work with Boolean functions, so their result
is stronger from that respect. However, while their proof was a bit involved and required using
results from additive combinatorics, our approach is more elementary and is based on exploiting
the fact that f is Boolean. In particular, our starting point is an analysis of the simple equation
f2 = 1 (when we think of f as mapping {0, 1}n to {±1}). Furthermore, we are able to use the fact
that f is Boolean in order to show that it can be computed by a small ⊕-DT, which does not seem
to follow from [GS08a].

Green and Sanders later extended their technique and proved a similar result for functions over
locally compact abelian groups f : G→ {0, 1} [GS08b]. Our technique does not extend to general
groups, but we do obtain results for the case that G = Znp , which again has the same advantages
and disadvantages compared to the result of [GS08b] (although, the simplicity of our approach is
even more evident here).

1.3 Proof idea

As mentioned above, our proof relies on the simple equation f2 = 1 (when we think of f : {0, 1}n →
{±1}). By expanding the Fourier representations (See Section 2 for definitions) of both sides we
reach the identity ∑

γ

f̂(γ)f̂(δ + γ) = 0,

which holds for all δ 6= 0 (See Lemma 3.2). This identity could be interpreted as saying that the
mass on pairs whose product is positive is the same as the mass on pairs whose product is negative.
In particular, if we consider the two heaviest elements in the Fourier spectrum, say, f̂(α) and f̂(β),
and let δ = α+ β, then by restricting f to one of the (affine) subspaces χδ(x) = 1 or χδ(x) = −1,
we get a substantial saving in the spectral norm (see Lemma 3.1). This happens since there is a
significant L1 mass on pairs {f̂(γ), f̂(δ + γ)} that have different signs. By repeating this process
we manage to prove the existence of small ⊕-DT for f .

The argument for functions over Znp is similar, but requires more technical work. For that reason
we decided to give a separate proof for the case of functions over the Boolean cube, and then, after
the ideas were laid out in their simpler form, to prove the results in the more general case.

1.4 The work of Tsang et al. [TWXZ13]

Independently and simultaneously to our work, Tsang et al. [TWXZ13] obtained related results.
The main objective of the work [TWXZ13] was to study the communication complexity of “XOR
functions”, that is, functions of the type F (x, y) = f(x⊕y) for some Boolean function f . It is easily
seen that in this case, the communication matrix of F (that is, the matrix MF whose (x, y)-th entry
if F (x, y)) has rank spar(f). Resolving the log-rank conjecture from communication complexity for
such functions was the main motivation for the conjecture raised in [MO09] and [ZS10].

Tsang et al. managed to prove a stronger version of our Theorem 1.1, namely, they proved that
f is constant on an affine subspace of co-dimension at most O(A). Their argument is identical to
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ours (namely, to the one given in Lemma 3.1) except that they observe that after O(1/A) steps of
increasing the largest Fourier coefficient of f , it grows to at least 1/2. At this point they observe
that the proof of (their equivalent of) Lemma 3.1 actually guarantees that the restriction that saves
the most in the spectral norm keeps increasing the largest coefficient. Thus, now at each step the
spectral norm goes down by some constant factor and hence additional O(1/A) many steps would
make f constant.3

Tsang et al. use their stronger version of Theorem 1.1 in order to construct a parity decision
tree for f of depth ‖f̂‖1 · log spar(f), and then, by using the simple observation that any depth d
parity decision tree for f defines in a natural way a deterministic communication protocol for F
with cost at most 2d, and the bound ‖f̂‖1 ≤

√
spar(f) (which follows from Cauchy-Schwarz), they

prove an upper bound of O
(√

rank(MF ) · log(rank(MF ))
)

on the communication complexity of

F . Shortly after, Lovett [Lov14] proved a similar upper bound on the communication complexity
of any Boolean function F (x, y).

By using the improved analysis which is presented in [TWXZ13], we can also improve the upper
bound in Theorem 1.4; it now follows that D⊕(f) = O(A log(4s/A2)). Note that A log(4s/A2) =
O(
√
s), and so as an immediate corollary we get the following theorem, which obtains a small

improvement over both Tsang et al. and Lovett’s results (for the special case of XOR functions):

Theorem 1.6. Let F : {0, 1}n×{0, 1}n → {0, 1} be a function such that F (x, y) = f(x⊕y) for some

f : {0, 1}n → {0, 1}. Then the deterministic communication complexity of F is O
(√

rank(MF )
)

.

The work [TWXZ13] does not contain analogs for Theorems 1.2, 1.3 and 1.5. We also note
that Tsang et al. did not study the case of functions from Znp to {0, 1}, and so they do not have
analogs of Theorems 5.7, 5.8, 5.10 and 5.11. Their work, however, contains structural results about
Boolean functions with low F2 degree and with “light Fourier tail” (the exact definitions appear in
their paper), which we do not consider.

1.5 Organization

Section 2 contains the basic background and definitions. In Section 3 we prove our results for
functions f : Zn2 → {+1,−1}. In Section 4 we prove upper bounds on the size and depth of
De Morgan formulas for Boolean functions with small spectral norm. The results for functions on
Znp are given in Section 5. Finally, in Section 6 we discuss problems left open by this work.

2 Notation and Basic Results

It will be more convenient for us to talk about functions f : {0, 1}n → {±1}. Note that if
f : {0, 1}n → {0, 1} then 1− 2f : {0, 1}n → {±1} and 1− 2f and f have roughly the same spectral
norm (up to a multiplicative factor of 2) and the same Fourier sparsity (up to ±1).

2.1 Decision trees and parity decision trees

In this section we define the basic computational models that we shall consider in the paper.

Definition 2.1 (Decision tree). A decision tree is a labeled binary tree T . Each internal node of
T is labeled with a variable xi, and each leaf by a bit b ∈ {+1,−1}. Given an input x ∈ Zn2 , a

3Our Lemma 3.1 only speaks about the spectral norm, but the effect on the largest Fourier coefficient is obvious
from the proof.
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computation over the tree is executed as follows: Starting at the root, stop if it’s a leaf, and output
its label. Otherwise, query its label xi. If xi = 0, then recursively evaluate the left subtree, and if
xi = 1, evaluate the right subtree.

A decision tree T computes a function f if for every x ∈ Zn2 , the computation of x over T
outputs f(x). The depth of a decision tree is the maximal length of a path from the root to a leaf.
The decision tree complexity of f , denoted D(f), is the depth of a minimal-depth tree computing
f . Since one can always simply query all the variables of the input, it holds that for any Boolean
function f , D(f) ≤ n. A comprehensive survey of decision tree complexity, as well as other related
complexity measures, can be found in [BdW02].

In the context of Fourier analysis, even a function with a simple Fourier spectrum, such as
the parity function over n bits, which has only 1 nonzero Fourier coefficient, requires a full binary
decision tree for its computation, and in particular its depth is n. However, the parity function
does have low complexity in a related computational model which seems to suggest itself as more
relevant in this context: a parity decision tree, first presented by Kushilevitz and Mansour [KM93].

Definition 2.2 (⊕-DT). A parity decision tree is a labeled binary tree T , in which every internal
node is labeled by α ∈ Zn2 , and each leaf with a bit b ∈ {+1,−1}. Whenever a computation over an
input x arrives at an internal node, it queries 〈α, x〉 (where the inner product is carried modulo 2).
If 〈α, x〉 = 0 it recursively evaluates the left subtree, and if 〈α, x〉 = 1, it evaluates the right subtree.
When the computation reaches a leaf it outputs its label.

Namely, a ⊕-DT can make an arbitrary linear query in every internal node (and in particular,
compute the parity of n bits using a single query). Since a query of a single variable is linear, this
model is an extension of the regular decision tree model.

The depth of the minimal-depth parity decision tree which computes f is denoted D⊕(f), thus
D⊕(f) ≤ D(f). As the example of the parity function shows, the parity decision tree model is
strictly stronger than the model of decision trees. We also denote by size⊕(f) the size (i.e. number
of leaves) of a minimal-size ⊕-DT computing f .

2.2 Fourier Transform

We represent Boolean functions as functions f : Zn2 → {+1,−1} ⊆ R where −1 represents the
Boolean value “True” and 1 represents the Boolean value “False”. For a vector of n bits α, αi
denotes its i-th coordinate. The set of 2n group characters {χα : Zn2 → {+1,−1} | α ∈ Zn2}, with
χα (x) = (−1)

∑n
i=1 αixi for every α ∈ Zn2 , forms a basis of the vector space of functions from Zn2 into

R. Furthermore, the basis is orthonormal with respect to the inner product4

〈f, g〉 = E
x

[f(x)g(x)]

where the expectation is taken over the uniform distribution over Zn2 . The Fourier expansion of
a function f : Zn2 → {+1,−1} is its unique representation as a linear combination of those group
characters:

f(x) =
∑
α∈Zn2

f̂(α)χα(x).

Two of the basic identities of Fourier analysis, which follow from the orthonormality of the basis,
are:

4Later when we study of functions over Znp we define the inner product to be Ex

[
f(x)g(x)

]
.
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1. f̂(α) = 〈f, χα〉 = Ex [f(x)χα(x)]

2. 〈f, g〉 = Ex [f(x)g(x)] =
∑

α∈Zn2
f̂(α)ĝ(α) (Plancherel’s Theorem)

The case f = g in Plancherel’s theorem is called Parseval’s Identity. Furthermore, when f is
Boolean, f2 = 1, which implies ∑

α∈Zn2

f̂(α)2 = 1. (4)

We define two basic complexity measures for Boolean functions:

Definition 2.3. Let f : Zn2 → {+1,−1} be a Boolean function. The sparsity of f , denoted spar(f),
is the number of non-zero Fourier coefficients, namely

spar(f) = #
{
α ∈ Zn2 | f̂(α) 6= 0

}
.

A function f is said to be s-sparse if spar(f) ≤ s.
Definition 2.4. Let f : Zn2 → {+1,−1} be a Boolean function. The L1 norm (also dubbed the
spectral norm) of f is defined as

‖f̂‖1 =
∑
α∈Zn2

|f̂(α)|.

For every f : Zn2 → {+1,−1} it holds that ‖f̂‖1 ≥ ‖f‖∞ = 1 (where ‖f‖∞ = maxx∈Zn2 |f(x)|).
It is well known that equality is obtained if and only if f = ±χα for some α ∈ Zn2 . For completeness,
we give the proof in Lemma 3.5.

These measures are related to parity decision trees using the following simple lemma, which is
a special case of a more general result (see [Bel92]). Its proof can be found in Chapter 3 of [O’D14].

Lemma 2.5. Let f : Zn2 → {+1,−1} be a Boolean function computed by a ⊕-DT T of depth k and
size m. Then:

1. spar(f) ≤ m2k ≤ 4k.

2. ‖f̂‖1 ≤ m ≤ 2k.

In the upcoming sections we consider restrictions of Boolean functions to (affine) subspaces of
Zn2 . We denote by f |V the restriction of f to an affine subspace V ⊆ Zn2 . For any α 6= 0, the set
{x | χα(x) = 1} is a subspace of Zn2 of co-dimension 1. The restriction of f to this subspace is
denoted f |χα=1. Similarly, the set {x | χα(x) = −1} is an affine subspace of co-dimension 1, and
we denote with f |χα=−1 the restriction of f to this affine subspace. It can be shown (cf. [O’D14],

Chapter 3, Section 3.3) that in the function f |χα=1, the coefficients f̂(β) and f̂(α + β) (for every

β ∈ Zn2 ) collapse to a single Fourier coefficient whose absolute value is |f̂(β) + f̂(α+ β)|. Similarly,
in the Fourier transform of f |χα=−1, they collapse to a single coefficient whose absolute value is

|f̂(β) − f̂(α + β)|. This in particular implies that ‖f̂‖1 and spar(f) do not increase when f is
restricted to such an affine subspace. Indeed, both facts follow easily from the representation

f(x) =
∑

β∈Zn2 /〈α〉

(
f̂(β) + f̂(β + α)χα(x)

)
χβ(x) , (5)

where Zn2/〈α〉 denotes the cosets of the subgroup 〈α〉 = {0, α} in Zn2 . When studying a restricted

function, say f ′ = f |χα(x)=1, we shall abuse notation and denote with f̂ ′(β) the term corresponding

to the coset β + 〈α〉. Namely, f̂ ′(β) = f̂(β) + f̂(β + α). (similarly, for f ′′ = f |χα(x)=−1, we shall

denote f̂ ′′(β) = f̂(β)− f̂(β + α).) Thus, in f ′ both f̂ ′(β) and f̂ ′(β + α) refer to the same Fourier
coefficient as we only consider coefficients modulo 〈α〉 (similarly for f ′′).
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3 Boolean functions with small spectral norm

In this section we prove our main results for functions over the Boolean cube. While many of the
proofs and techniques used for general primes also apply to the case p = 2, we find the case p = 2
substantially simpler, so we present the proofs for this case separately.

3.1 Basic tools

In this section we prove the following lemma, which states that for every Boolean function f : Zn2 →
{+1,−1}, with small spectral norm, there exists a linear function χγ such that both restrictions
f |χγ=1 and f |χγ=−1 have noticeable smaller spectral norms compared to f . In Section 5 we give a
generalization of the lemma for functions f : Znp → {+1,−1} (Lemma 5.1).

Lemma 3.1 (Main Lemma for functions over Zn2 ). Let f : Zn2 → {+1,−1} be a Boolean function.
Let f̂(α) be f ’s maximal Fourier coefficient in absolute value, and f̂(β) be the second largest, and
suppose f̂(β) 6= 0. Let f ′ = f |χα+β=1 and f ′′ = f |χα+β=−1. Then, if f̂(α)f̂(β) > 0 it holds that

‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)| and ‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(β)|.

If f̂(α)f̂(β) < 0 then

‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(β)| and ‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(α)|.

The proof of the lemma follows from analyzing the simple equation f2 = 1.

Lemma 3.2. Let f : Zn2 → {+1,−1} be a Boolean function. For all α 6= 0, it holds that∑
γ

f̂(γ)f̂(α+ γ) = 0.

Proof. Since f is Boolean we have that f2 = 1. In the Fourier representation,(∑
γ

f̂(γ)χγ(x)

)∑
β

f̂(β)χβ(x)

 = 1.

Then
∑

γ f̂(γ)f̂(α + γ) is the Fourier coefficient f̂2(α) of the function f2 at α. However, if α 6= 0

then this coefficient equals 0 by the uniqueness of the Fourier expansion of the function f2 = 1.

Lemma 3.1. Without loss of generality assume that f̂(α)f̂(β) > 0, i.e. they have the same sign
(the other case is completely analogous). By Lemma 3.2,∑

γ∈Zn2

f̂(γ)f̂(α+ β + γ) = 0. (6)

Let Nα+β ⊆ Zn2 be the set of vectors γ such that f̂(γ)f̂(α+ β + γ) < 0 (Note that by assumption,
α, β 6∈ Nα+β). Switching sides in (6), we get:

2
∣∣∣f̂(α)f̂(β)

∣∣∣ =
∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣−

∑
γ 6∈Nα+β
γ 6=α,β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ .
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In particular,

|f̂(α)||f̂(β)| ≤ 1

2

∑
γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣ . (7)

We now use the fact that that f̂(β) is the second largest in absolute value, and f̂(α) does not
appear in the sum, to bound the right hand side:∑

γ∈Nα+β

∣∣∣f̂(γ)f̂(α+ β + γ)
∣∣∣

≤ |f̂(β)|
∑

γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (8)

Then (7) and (8) (as well as the assumption |f̂(β)| > 0) together imply

|f̂(α)| ≤ 1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
. (9)

Let f ′ = f |χα+β=1. Then for every γ the coefficients f̂(γ) and f̂(α + β + γ) collapse to a single

coefficient whose absolute value is |f̂(γ) + f̂(α+ β + γ)| (recall Equation (5)). For γ ∈ Nα+β,

|f̂(γ) + f̂(α+ β + γ)| =
∣∣∣|f̂(γ)| − |f̂(α+ β + γ)|

∣∣∣
which reduces the L1 norm of f ′ compared to that of f by at least min(|f̂(γ)|, |f̂(α+ β + γ)|). In
total, since both γ and α+ β + γ belong to Nα+β, we get:

‖f̂ ′‖1 ≤ ‖f̂‖1 −
1

2

∑
γ∈Nα+β

min
{
|f̂(γ)|, |f̂(α+ β + γ)|

}
.

Therefore by (9) we have
‖f̂ ′‖1 ≤ ‖f̂‖1 − |f̂(α)|.

When we consider f ′′ = f |χα+β=−1 we clearly have that for γ = α,

|f̂ ′′(γ)| = |f̂(γ)− f̂(α+ β + γ)| = |f̂(α)| − |f̂(β)|.

Hence,
‖f̂ ′′‖1 ≤ ‖f̂‖1 − |f̂(β)|.

Next, we show that any Boolean function with small spectral norm has a large Fourier coefficient.

Lemma 3.3. Let f : Zn2 → {+1,−1} be a Boolean function. Denote A = ‖f̂‖1, and let f̂(α) be f ’s
maximal Fourier coefficient in absolute value. Then |f̂(α)| ≥ 1/A. Furthermore, let f̂(β) be f ’s
second largest Fourier coefficient in absolute value. Then |f̂(β)| ≥ (1− f̂(α)2)/A.

Proof. By Parseval’s identity,

1 = E[f2] =
∑
γ

f̂(γ)2.

9



Now note that
1 =

∑
γ

f̂(γ)2 ≤ |f̂(α)|
∑
γ

|f̂(γ)| ≤ A|f̂(α)|,

which implies that indeed |f̂(α)| ≥ 1/A. The second statement follows similarly, since

1− f̂(α)2 =
∑
γ 6=α

f̂(γ)2 ≤ |f̂(β)|
∑
γ 6=α
|f̂(γ)|

< |f̂(β)| · ‖f̂‖1 = A|f̂(β)|.

Corollary 3.4. Let f : Zn2 → {+1,−1} be a Boolean function such that ‖f̂‖1 = A > 1. Then there

exists γ ∈ Zn2 and b ∈ {+1,−1} such that ‖f̂ |χγ=b‖1 ≤ A− 1/A.

Proof. The assumption A > 1 implies the second largest coefficient, f̂(β), is non-zero, and then the
result is immediate from Lemma 3.1 and Lemma 3.3.

3.2 Proofs of Theorems

We now show how Theorems 1.1, 1.2, 1.4 and 1.5 follow as simple consequences of Lemma 3.1.

Lemma 3.5. Let f : Zn2 → {+1,−1} be a Boolean function such that ‖f̂‖1 = 1. Then f = ±χα
for some α ∈ Zn2 .

Proof. By Parseval’s identity and the assumption, we get∑
γ

f̂(γ)2 = 1 =
∑
γ

|f̂(γ)|.

For all γ we have that |f̂(γ)| ∈ [0, 1], so |f̂(γ)| > f̂(γ)2 unless |f̂(γ)| = 1 or f̂(γ) = 0, and the
proposition follows.

Corollary 3.4 and Lemma 3.5 imply 1.1:

Theorem (Theorem 1.1, restated). Let f : Zn2 → {+1,−1} be such that ‖f̂‖1 = A, then, there is
an affine subspace V ⊆ Zn2 of co-dimension at most A2 such that f is constant on V .

Proof. Apply Corollary 3.4 iteratively on f . Since restricting a function may only decrease its
spectral norm, we are guaranteed to reduce the spectral norm in each step by at least 1/A, as long
as the L1 norm is at least 1. Thus, after less than A2 steps, we are left with a function g which is
a restriction of f on an affine subspace defined by the restrictions so far, such that ‖ĝ‖1 = 1. By
Lemma 3.5, g = ±χα for some α ∈ Zn2 . If α 6= 0 we further restrict g on χα = 1 to get a restriction
of f which is constant.

We note that the proof of Theorem 1.1 actually implies that f is constant on an affine subspace
of co-dimension at most

(
A+1
2

)
. As mentioned earlier, using another observation and a more careful

analysis, [TWXZ13] improved the co-dimension to O(A).

Theorem (Theorem 1.2, restated). Let f : Zn2 → {+1,−1} be such that ‖f̂‖1 = A, then size⊕(f) ≤
2A

2
n2A.
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Proof. Let

L(n,A)
def
= max

f :Zn2→{+1,−1}
‖f̂‖1≤A

size⊕(f).

We show, by induction on n, that L(n,A) ≤ 2A
2 · n2A.

For n = 1 the result is trivial.
Let n > 1 and further assume that A > 1 (if A = 1 then the claim follows from Lemma 3.5).

Let f̂(α), f̂(β) be the first and second largest Fourier coefficients in absolute value, respectively.
By Lemma 3.3 we are in one of the following cases:

1. |f̂(α)| ≥ 1/2

2. 1/2 > |f̂(α)| ≥ 1/A and |f̂(β)| > 1−f̂(α)2
A ≥ 3

4A .

Consider the tree whose first query is the linear function χγ where γ = α + β (i.e. we branch
left or right according to the value of 〈x, γ〉). By the choice of γ we obtain the following recursion:
In case 1,

L(n,A) ≤ L(n− 1, A− 1/2) + L(n− 1, A);

While in case 2,
L(n,A) ≤ L(n− 1, A− 1/A) + L(n− 1, A− 3/(4A)).

Note also that in the second case A ≥ 2, or else |f̂(α)| ≥ 1/2 by Lemma 3.3. Induction follows in
the first case as

L(n,A) ≤ L(n− 1, A− 1/2) + L(n− 1, A)

≤ 2(A−1/2)
2 · (n− 1)2(A−1/2) + 2A

2 · (n− 1)2A

≤ 2A
2 · (n− 1)2(A−1/2) (1 + (n− 1))

< 2A
2 · n2A .

In the second case we have

L(n,A) ≤ L(n− 1, A− 1/A) + L(n− 1, A− 3/(4A))

≤ 2(A−1/A)
2 · (n− 1)2(A−1/A) +

2(A−3/(4A))
2 · (n− 1)2(A−3/(4A))

≤ 2A
2 · n2A

(
2−2+1/A2

+ 2−3/2+(3/4)2/A2
)

≤ 2A
2 · n2A ,

where in the last inequality we used the fact that A ≥ 2.

As the AND function demonstrates, this argument gives a result that is tight up to a polynomial
factor in some cases.

Theorem (Theorem 1.4, restated). Let f : Zn2 → {+1,−1} be such that ‖f̂‖1 = A and spar(f) = s.
Then D⊕(f) ≤ A2 log(4s/A2).
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Proof. By Theorem 1.1, there exist A2 linear functions α1, . . . , αA2 that can be fixed to values
b1, . . . , bA2 , respectively, where bi ∈ {+1,−1} for 1 ≤ i ≤ A2, such that f restricted to the affine
subspace {x | χαi(x) = bi , ∀1 ≤ i ≤ A2} is constant. This implies that for any non-zero coefficient
f̂(β) there exists at least one other non-zero coefficient f̂(β+γ) for γ ∈ span{α1, . . . , αA2}. Indeed,
if no such coefficient exists then the restriction f |χα1 (x)=b1,...,χαA2=bA2

will have the non-constant

term f̂(β) · χβ (for example, this can be easily obtained from Equation (5)).

Therefore, for any other fixing of χα1 , . . . , χαA2 , both f̂(β)χβ and f̂(β + γ)χβ+γ collapse to the
same (perhaps non-zero) linear function, which implies that spar(f |χα1=b′1,...,χαA2=b

′
A2

) ≤ spar(f)/2

for any choice of b′1, . . . , b
′
A2 . In other words, if we consider the tree of depth A2 in which on level i

all nodes branch according to 〈αi, x〉 then restricting f to any path yields a new function with half
the sparsity. Thus, we can continue this process by induction for at most log s steps, until all the
functions in the leaves are constant. The resulting tree has depth at most A2 log s.

A slightly more careful argument suggests a better bound. Let k
def
= dlog(2s/A2)e. In the first k

steps of the above algorithm, we make at most A2 queries in each step. Now, for i = 1, 2, . . ., the
Fourier sparsity before the (k + i)-th step is at most s/2k+i−1 ≤ A2/2i, hence the spectral norm is

at most A/
√

2
i

(since for any Boolean function g, ‖ĝ‖1 ≤
√

spar(g)), and the number of queries in
this iteration is at most A2/2i.5 Overall, the number of queries is at most

A2 · log(2s/A2) +
∞∑
i=1

A2

2i
= A2 · log(4s/A2) .

Our next goal is proving Theorem 1.5. To this end, we prove a lemma that shows there exists a
low depth ⊕-DT, computing a function g, such that Prx[f(x) 6= g(x)] ≤ ε, where x is drawn from
the uniform distribution over Zn2 . Recall that the bias of a Boolean function f is defined to be

bias(f)
def
=
∣∣∣Pr
x

[f(x) = 1]− Pr
x

[f(x) = −1]
∣∣∣ .

Alternatively, bias(f) = |f̂(0)|.

Lemma 3.6. Let f : Zn2 → {+1,−1} be a Boolean function with ‖f̂‖1 ≤ A. Then, there exists a ⊕-
DT of depth at most O(A2 + log(1/ε)) that computes a function g such that Prx[f(x) 6= g(x)] ≤ 2ε.
Furthermore, the size of the tree is at most 2O(A2) min{1/ε2, log(1/ε)2A}.

Proof. Let K = dmax
{

10A2, 2 log(1/ε)
}

+ 1e be a bound on the depth of the tree. In order to
construct the ⊕-DT, we use a recursive argument that stops whenever we reach a highly biased
leaf (with bias at least 1− 2ε), or after K levels of recursion (i.e., after K queries have been made).
Then we show that for a uniformly random x ∈ Zn2 , x arrives at a highly biased leaf with probability
≥ 1− ε, hence proving the statement of the lemma.

Let f̂(α) be f ’s largest coefficient in absolute value, and f̂(β) the second largest. Note that if
|f̂(0)| > 1− 2ε we are done. Hence, we consider two cases:

5In order to achieve the bound stated in Theorem 1.4, it is enough to stop at i = 1 and query the remaining
A2 linear functions. However, we present a more elaborate argument, which allows us to apply the improvement of
[TWXZ13] in order to obtain Theorem 1.6. More generally, if one shows that any Boolean function with spectral
norm A and sparsity s is constant on an affine subspace of co-dimension B, this proof implies that such functions
have parity decision trees of depth O(B log(4s/A2)).
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1. |f̂(α)| > 1− ε for α 6= 0:

We first show that if |f̂(α)| > 1−ε then |f̂(0)| < ε. By considering −f instead of f , if needed,
we may assume without the loss of generality f̂(α) > 1− ε. Note that

1− ε < f̂(α) = Pr[f = χα]− Pr[f 6= χα]

= (1− Pr[f 6= χα])− Pr[f 6= χα],

so Pr[f 6= χα] < ε/2. Now, since E[χα] = 0, we have

|f̂(0)| = |E[f ]| = |E[f ]−E[χα]| = |E[f − χα]|
≤ E[|f − χα|] = 2 Pr[f 6= χα] < ε.

In this case we query on χα. Note that no matter what value χα obtains, the restricted
function has bias at least |f̂(α)| − |f̂(0)| > 1− 2ε, and we terminate the recursion.

2. |f̂(α)| ≤ 1− ε:
In this case we query on χα+β. Let f ′ = f |χα+β=1 and f ′′ = f |χα+β=−1. By Lemma 3.1, for at
least one of f ′ and f ′′, the spectral norm drops by at least 1/A. We continue by induction the
construction on f ′ and f ′′, terminating when all the leaves are highly biased (in particular
this includes the case of a constant leaf), or after at most K queries have been made.

Note that if we replace each highly biased leaf in the ⊕-DT with the constant it is biased towards
(i.e. by the sign of its constant term), the total error of the ⊕-DT would increase by at most ε.

It remains to be shown that the fraction of inputs x ∈ Zn2 that arrive at an unbiased leaf is
at most ε. We say that an internal node labeled χγ is norm-reducing for x, if χγ(x) = b and
the restriction on χγ = b reduces the spectral norm by at least 1/A. Clearly, a computation
over any input x which traverses A2 norm reducing nodes for x arrives at a leaf whose L1 norm
equals 1. Making one additional query, as described in Case 1, the computation ends at a constant
leaf. Furthermore, by construction, all the leaves which are not highly biased appear in the K-
th level of the tree. Hence, an input which arrives at an unbiased node satisfies K independent
linear equations, for which at most A2 of the first K − 1 are norm reducing. Since for every fixed
0 6= γ ∈ Zn2 and b ∈ {+1,−1} the probability that χγ(x) = b is exactly 1/2, the probability that x
arrives at a non highly biased node is bounded by6

A2−1∑
i=0

(
K−1
i

)
2K−1

≤ 2−(K−1)/2 ≤ ε

by the choice of K.
To prove the upper bound on the size of the tree we first note that 2K is a trivial upper bound.

Moreover, as in the proof of Theorem 1.2, the construction satisfies the recursion formula

S(K − d,B) ≤ max {S(K − (d+ 1), B − 1

2
) + S(K − (d+ 1), B),

S(K − (d+ 1), B − 1/B) +

S(K − (d+ 1), B − 3/(4B)) } ,
6We count how many words in {0, 1}K have fewer than A2 1’s.
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where S(K − d,B) stands for the number of leaves in the subtree rooted at a node v of depth7

d such that the function fv computed at v satisfies ‖f̂v‖1 ≤ B. As before, the solution to this
recursion is S(K,A) ≤ 2A

2
K2A. Overall, we have that the size of the approximating parity decision

tree is at most:

min
{

2K , 2A
2
K2A

}
= min

{
2 ·max

{
210A

2
, ε−2

}
,

2A
2 ·max

{
(2 log(1/ε) + 1)2A, (10A2 + 1)2A

}}
≤ min

{
2 · 210A2 · ε−2,

2A
2 · (2 log(1/ε) + 1)2A · (10A2 + 1)2A

}
≤ 2O(A2) ·min

{
ε−2, log(1/ε)2A

}
as claimed.

In fact, in the proof of Lemma 3.6, we could have continued the recursion until reaching a
constant leaf or depth K, but for the sake of understanding the proof of 1.5 it may be more clear
to keep the current version in mind.

The proof of Theorem 1.5 follows by combining Lemma 3.6 with the well known result of
Goldreich and Levin [GL89] and of Kushilevitz and Mansour [KM93], who showed that given a
query oracle to a function f , with high probability, one can approximate its large Fourier coefficients
in polynomial time.

Lemma 3.7 ([GL89, KM93]). There exists a randomized algorithm that given a query oracle to
a function f : Zn2 → {+1,−1}, and parameters δ, θ, η, outputs, with probability at least 1 − δ,
a list containing all of f ’s Fourier coefficients whose absolute value is at least θ. Furthermore,
the algorithm outputs an additive approximation of at most η to each of these coefficients. The
algorithm runs in polynomial time in n, 1/θ, 1/η and log(1/δ).

Theorem 1.5. We use the algorithm from Algorithm 3.7 to find f ’s largest Fourier coefficient in

absolute value, f̂(α). Whenever |f̂(α)| ≤ 1 − ε, Lemma 3.3 implies |f̂(β)| > 1−f̂(α)2

‖f̂‖1
≥ 1−f̂(α)2

A >

ε/A, so the same algorithm can be used to find the second largest coefficient, f̂(β), in time
poly(n,A, 1/ε, log(1/δ)). We use Lemma 3.6 to construct a ⊕-DT. The bound on the running
time follows from the size of the ⊕-DT and the running time of the algorithm from Algorithm 3.7.

In fact, there is a slight inaccuracy in the argument above. Note that Algorithm 3.7 only
guarantees that we find a coefficient that is approximately the largest one. However, if it is the
case that the second largest coefficient is very close to the largest one, then in Lemma 3.6 when we
branch according to χα+β both children have significantly smaller spectral norm.

If it is the case that we correctly identified the largest Fourier coefficient but failed to identify
the second largest then we note that if our approximation is good enough, say better than ε/2A,

then even if we are mistaken and branch according to χα+β′ where
∣∣∣|f̂(β)| − |f̂(β′)|

∣∣∣ < ε/2A, the

argument in Lemma 3.6 still works, perhaps with a slightly worse constant in the big O.

7A node in the ⊕-DT is of depth d if its distance from the root is d.
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4 Formula size and depth of Boolean functions with small spectral
norm

In this section, we give upper bounds on the formula size and depth of Boolean functions with
small spectral norm.

A De Morgan formula is a Boolean formula over the basis B2 = {∨,∧,¬} with fan in at most 2.
A De Morgan formula is represented by a tree such that every leaf is labeled by an input variable
and every internal node is labeled by an operation from B2. A formula is said to compute a function
f : {0, 1}n → {0, 1} if on all inputs x ∈ {0, 1}n it outputs f(x). The computation is done in the
natural way from the leaves to the root. The size of a formula F , denoted by L(F ), is defined as
the number of leaves in F . The De Morgan formula size of a function f : {0, 1}n → {0, 1}, denoted
by L(f), is the size of the minimal De Morgan formula that computes f .

The next lemma states a natural connection between parity decision trees and De Morgan
formulas:

Lemma 4.1. Any Boolean function computed by a ⊕-DT of size s has an O(n2 · s) size formula
over the De Morgan basis.

Proof. We use the fact that any parity function (or its negation) on at most n variables can be
computed by a De Morgan formula of size at most 9/8 · n2 (see [Yab54]).

For the rest of the proof, it will be convenient to use the number of nodes in the decision tree,
s′, instead of the number of leaves. As s′ = 2s − 1, where s denotes the number of leaves in the
⊕-DT, it is enough to show that any ⊕-DT with s′ nodes has an equivalent formula with O(n2 · s′)
leaves.

We show, by induction on s′, that any ⊕-DT on n input variables with s′ nodes can be computed
by a De Morgan formula of size s′ · 9/4 · n2.

For size s′ = 1, the function must be constant and thus can be realized by a size 2 De Morgan
formula: x1 ∨ ¬x1 for the constant 1 and x1 ∧ ¬x1 for the constant 0.

For a ⊕-DT of size s′ > 1, let `(x1, . . . , xn) be the linear function evaluated at the root of the
⊕-DT, and let fL, fR be the functions that the left subtree and right subtree compute, respectively.
Also denote by s′L, s

′
R the number of nodes in the left subtree and right subtree, respectively. We

can write the function evaluated by the decision tree as

f(x1, . . . , xn) = (`(x1, . . . , xn) ∧ fL(x1, . . . , xn))∨
(¬`(x1, . . . , xn) ∧ fR(x1, . . . , xn)) .

The formula size of the above expression is at most L(fL) + L(fR) + L(`) + L(¬`). By the
induction hypothesis L(fL) ≤ s′L · 9/4 · n2 and L(fR) ≤ s′R · 9/4 · n2. Overall, we get

L(f) ≤ L(fR) + L(fL) + L(`) + L(¬`)
≤ (s′R + s′L + 1/2 + 1/2) · 9/4 · n2 = s′ · 9/4 · n2 ,

which completes the proof.

A well known result of Spira [Spi71] shows that every (De Morgan) formula of size S can be
realized by a O(log(S)) depth (De Morgan) formula. This result implies that every ⊕-DT of size s
can be computed by a depth O(log(s) + log(n)) De Morgan formula. Theorem 1.3 is an immediate
corollary of Lemma 4.1 and Theorem 1.2. We restate it for convenience.

Theorem (Theorem 1.3, restated). Any f : Zn2 → {+1,−1} such that ‖f̂‖1 = A has a De Morgan
formula of size O(2A

2 · n2A · n2) and a De Morgan formula of depth O(log(n) ·A+A2).
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5 Functions over Znp with small spectral norm

In this section, we extend our results to functions f : Znp → {+1,−1} where p is any fixed prime.
Throughout this section we assume p > 2. We start by giving some basic facts on the Fourier
transform over Znp .

5.1 Preliminaries

Let ω = e
2πi
p ∈ C be a primitive root of unity of order p. The set of pn group characters

{χα : Znp → C | α ∈ Znp},

where χα(x) = ω〈α,x〉, is a basis for the vector space of functions from Znp into C, and is orthonormal

with respect to the inner product 〈f, g〉 = Ex[f(x)g(x)].8 We now have that f̂(α) = Ex[f(x)χα(x)]
and f(x) =

∑
α∈Znp f̂(α)χα(x). Plancherel’s theorem holds here as well and the sparsity and L1

norm are defined in the same way as for functions f : Zn2 → {+1,−1}. Lemma 3.3 also extends
to functions f : Znp → {+1,−1}, with virtually the same proof. When f is real-valued (and in

particular, a Boolean function), then f̂(0) = E[f ] is real, and it can also be directly verified that

f̂(α) = f̂(−α).
We have the analog to Equation (5):9

f(x) =
∑

β∈Znp/〈α〉

(
p−1∑
k=0

f̂(β + k · α)(χα(x))k

)
χβ(x) . (10)

Hence, when f is restricted to an affine subspace on which χα = ωλ (where 0 ≤ λ ≤ p − 1), then
for g = f |χα=ωλ and for every β ∈ Znp/〈α〉 we have

ĝ(β) =

p−1∑
k=0

ωλkf̂(β + kα).

For every β ∈ Znp , we denote by [β]α = β + 〈α〉 the coset of 〈α〉 in which β resides.
Lemma 3.2 now becomes: ∑

α∈Znp

f̂(α)f̂(β − α) = 0 (11)

for all 0 6= β ∈ Znp .
As a generalization of the ⊕-DT model, we define a p-ary linear decision tree, denoted ⊕p-

DT, to be a computation tree where every internal node v is labeled by a linear function γ ∈ Znp
and has p children. The edges between v and its children are labeled 0, 1, . . . , p − 1, and on an
input x, it computes 〈γ, x〉 mod p and branches accordingly. We carry along from the binary
case the notation D⊕p(f) and size⊕p(f), and define them to be the depth (respectively, size) of a
minimal-depth (resp. size) ⊕p-DT computing f .

8For a complex number z, we denote by z its complex conjugate.
9Recall that 〈α〉 is the additive group generated by α and Znp/〈α〉 is the set of cosets of 〈α〉.
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5.2 Basic tools

In this section we prove the basic tools required for generalizing the theorems for functions defined
on Zn2 to functions f : Znp → {+1,−1}. As a generalization of Lemma 3.1, we show a slightly more
complex and detailed argument:

Lemma 5.1 (Main Lemma for functions over Znp ). Let f : Znp → {+1,−1} be a non-constant

Boolean function such that ‖f̂‖1 = A. Let f̂(α) be its largest coefficient in absolute value, and f̂(β)
be the second largest. Then there exists a universal positive constant c0 and a positive constant
c1 = c1(p) = Θ(1/p2) such that

1. For all λ ∈ Zp, ‖ ̂f |χβ−α=ωλ‖1 ≤ A− c0|f̂(β)|.

2. There exist at least m := bp/3c distinct elements λ1, . . . , λm ∈ Zp such that

‖ ̂f |χβ−α=ωλk‖1 ≤ A− c0|f̂(α)| ≤ A− c0/A

for k = 1, . . . ,m.

3. There exist at least p− 1 distinct elements λ1, . . . , λp−1 ∈ Zp such that

‖ ̂f |χβ−α=ωλk‖1 ≤ A− c1|f̂(α)| ≤ A− c1/A

for k = 1, . . . , p− 1.

As before we first prove a claim characterizing functions with very small spectral norm. Observe
that when p > 2, the characters themselves are not Boolean functions any more. The following is
a variant of Lemma 3.5 for Znp with p > 2.

Lemma 5.2. Let f : Znp → {+1,−1} be a Boolean function such that ‖f̂‖1 = 1. Then f = ±1.

Proof. Again, we apply Parseval’s identity and the assumption to get∑
γ

|f̂(γ)|2 = 1 =
∑
γ

|f̂(γ)|.

As before, |f̂(γ)| ∈ [0, 1], which implies |f̂(α)| = 1 for exactly one α ∈ Znp , i.e. f = z · χα where
z ∈ C and |z| = 1. Since f is Boolean and f(0) = z, we get z = ±1, and ±χα is Boolean (when
p > 2) only when α = 0.

The following is a purely geometric lemma that we use in our analysis. Since the Fourier
coefficients now are complex numbers we need to bound the decrease in the spectral norm when
two coefficients that are not aligned in the same direction collapse to the same coefficient.

Lemma 5.3. Let z1, z2 ∈ C such that |z1| = R, |z2| = r and r ≤ R. Suppose the angle between z1
and z2 is θ. Then, for C = C(θ) = (1− cos(θ))/2 it holds that

|z1|+ |z2| − |z1 + z2| ≥ Cr.

Proof. Suppose without the loss of generality (by applying a suitable rotation and reflection if
needed) that z1 = R is a positive real number, and that the angle is exactly θ ≤ π (i.e. z2 = reiθ).
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Note that |z1|+ |z2| = R+ r and z1 + z2 = (R+ r cos(θ)) + ir sin(θ). Hence,

|z1 + z2| =
√

(R+ r cos(θ))2 + (r sin(θ))2

=
√
R2 + r2 + 2Rr cos(θ) .

It remains to be shown that

R+ r −
√
R2 + r2 + 2Rr cos(θ) ≥ 1− cos(θ)

2
r.

This is equivalent to (
R+ r − 1− cos(θ)

2
r

)2

−R2 − r2 − 2Rr cos(θ) ≥ 0.

Rearranging and factoring out r ≥ 0, we get a linear function in r which is non-negative on both
r = 0 and r = R, which implies the inequality holds for all 0 ≤ r ≤ R.

The next lemma is similar to the inequalities of the type we used in the proof of Lemma 3.1.

Lemma 5.4. Let f : Znp → {+1,−1} be a non-constant Boolean function, and suppose f̂(0) is the

largest Fourier coefficient in absolute value and f̂(β) is the second largest. Then

2|f̂(0)| ≤
∑
γ∈Znp
γ 6=0,β

min
{
|f̂(γ)|, |f̂(γ − β)|

}
.

Proof. By rearranging Equation (11) with respect to β, we get:

|2f̂(0)f̂(β)| =

∣∣∣∣∣∣∣∣
∑
γ∈Znp
γ 6=0,β

f̂(γ)f̂(β − γ)

∣∣∣∣∣∣∣∣
Now apply the triangle inequality to the right hand side, and then utilize the fact that f̂(β) is the
second largest in absolute value and f̂(0) does not appear in the right hand side, to obtain

2|f̂(0)||f̂(β)| ≤ |f̂(β)|
∑
γ∈Znp
γ 6=0,β

min
{
|f̂(γ)|, |f̂(β − γ)|

}
.

Since f is real-valued, f̂(β − γ) = f̂(γ − β) (and in particular, they have the same absolute value),
and since f is non-constant, by Lemma 5.2 we have ‖f̂‖1 > 1, i.e. f̂(β) 6= 0, which implies the
desired inequality.

When analyzing the loss in the L1 norm which is caused by restriction on χη, it will be convenient

to sum over the individual losses on pairs f̂(γ), f̂(γ + η) that collapse to the same coefficient.
However, letting γ run over all of Znp , these pairs are not pairwise disjoint, so we might over-count
the losses. The following lemma generously accounts for such over-counting issues, by showing that
summing over all (not pairwise disjoint) pairs differs from the true counting by at most a constant
factor.
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Lemma 5.5. Let f : Znp → {+1,−1}, 0 6= η ∈ Znp , and λ ∈ Zp, then

∑
γ∈Znp/〈η〉

(
p−1∑
k=0

∣∣∣f̂(γ + kη)
∣∣∣− ∣∣∣∣∣

p−1∑
k=0

f̂(γ + kη)ωλk

∣∣∣∣∣
)
≥

1

3

∑
γ∈Znp

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)| .

Note that the left hand side of the last inequality is exactly the loss in the L1 norm when
restricting f on χη = ωλ. For the ease of reading, we defer the proof of Lemma 5.5 to Section 5.4.

Lemma 5.6. Let f : Znp → {+1,−1} be a non-constant Boolean function such that ‖f̂‖1 = A. Let

f̂(α) be its largest coefficient in absolute value, and f̂(β) be the second largest. Suppose λ ∈ Zp is

such that the angle between f̂(α) and ωλf̂(β) in absolute value is at most π/3. Then there is a

universal constant c > 0 such that ‖ ̂f |χβ−α=ωλ‖1 ≤ A− c|f̂(α)| ≤ A− c/A.

Proof. Denote η
def
=β − α. Under the assumption of the lemma, noting that10 f̂(α) · ωλf̂(β) =

f̂(α) · ω−λf̂(−β)

Re
(
f̂(α) · ω−λf̂(−β)

)
≥ cos(π/3) · |f̂(α) · ω−λf̂(−β)|

= cos(π/3)|f̂(α)||f̂(β)|. (12)

By equation (11), with respect to −η 6= 0, we have∑
γ

f̂(γ)f̂(−η − γ) = 0.

Hence
c0 · f̂(α)f̂(−β) = −

∑
γ 6=α,−β

f̂(γ)f̂(−η − γ),

where c0 = 1 if α = −β and c0 = 2 otherwise. Multiplying by ω−λ and taking the real part of both
sides gives

Re
(
c0 · ω−λf̂(α)f̂(−β)

)
=

∑
γ 6=α,−β

−Re
(
f̂(γ)ω−λf̂(−η − γ)

)
. (13)

Let Nη =
{
γ | Re

(
f̂(γ)ω−λf̂(−η − γ)

)
< 0, γ 6= α,−β

}
. Then (13), as well as the fact that c0 ∈

{1, 2} and the left hand side is positive (by (12)), imply

Re
(
ω−λf̂(α)f̂(−β)

)
≤
∑
γ∈Nη

−Re
(
f̂(γ)ω−λf̂(−η − γ)

)
. (14)

Note that for every pair (f̂(γ), ω−λf̂(−η − γ)), where γ ∈ Nη, the angle between f̂(γ) and

ω−λf̂(−η − γ) (= ωλf̂(η + γ)) is in the range [π/2, 3π/2]. Furthermore, when applying the re-
striction χη = ωλ each such pair collapses to the same coefficient, and since the angle between the
two coefficients (in absolute value) is at least π/2, by Lemma 5.3 it follows that for all γ ∈ Nη,

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)| ≥
min{|f̂(γ)|, |f̂(η + γ)|} · C(π/2). (15)

10Re(z) is the real part of a complex number z and z is its conjugate.
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(where C(θ) = (1 − cos(θ))/2 is as defined in Lemma 5.3). Using (15) to bound the loss on
every coefficient, and summing over all γ ∈ Znp (while bearing in mind that every summand is
non-negative), we have∑

γ

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)|

≥
∑
γ∈Nη

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)|

≥
∑
γ∈Nη

min{|f̂(γ)|, |f̂(η + γ)|} · C(π/2)

Since neither α nor −β appear in Nη, and f̂(β) is the second largest coefficient, for all γ ∈ Nη it
holds that

min{|f̂(γ)|, |f̂(η + γ)|} ≥ |f̂(γ)||f̂(η + γ)|
|f̂(β)|

,

so ∑
γ

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)| ≥

1

|f̂(β)|
· C(π/2) ·

∑
γ∈Nη

|f̂(γ)||f̂(η + γ)|. (16)

Taking the complex conjugate and multiplying by ω−λ, it is also clear that for all γ

|f̂(γ)||f̂(η + γ)| = |f̂(γ)||ω−λf̂(−η − γ)|
= |f̂(γ)ω−λf̂(−η − γ)|

≥ −Re
(
f̂(γ)ω−λf̂(−η − γ)

)
.

Hence (16) and (14) imply∑
γ

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)| ≥

C(π/2)

|f̂(β)|
·
∑
γ∈Nη

−Re
(
f̂(γ)ω−λf̂(−η − γ)

)
≥

C(π/2)

|f̂(β)|
Re
(
ω−λf̂(α)f̂(−β)

)
.

And (12) now gives ∑
γ

|f̂(γ)|+ |f̂(η + γ)| − |f̂(γ) + ωλf̂(η + γ)| ≥

C(π/2) · cos(π/3) · |f̂(α)| · |f̂(β)|
|f̂(β)|

≥ c|f̂(α)|

where c is an absolute constant. By Lemma 5.5 the L1 norm of the restricted function, f |χη=ωλ ,

has decreased by at least c|f̂(α)|/3, compared to the L1 norm of f .
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We are now ready to prove the main lemma for functions over Znp .

Lemma 5.1. Let η = β − α as in Lemma 5.6. Let λ ∈ Zp, and consider the restriction χη = ωλ.

Let θ be the angle between f̂(α) and ωλf̂(α+ η) = ωλf̂(β). We consider two cases:

• |θ| > π/3. Under the restriction the coefficients {f̂(α + kη)}k∈Zp collapse into the same

coefficient. In particular, we can consider the loss in the L1 norm by first collapsing f̂(α)
and f̂(β) into one coefficient and then collapsing this coefficient with the rest of the p − 2
coefficients. Since the second step may only reduce the L1 norm, it is enough to consider the
loss in the first step. Indeed, by Lemma 5.3, collapsing f̂(α) and f̂(β) reduces the L1 norm
by at least C(π/3) · |f̂(β)| (where C(·) is as stated in Lemma 5.3).

• |θ| ≤ π/3. In this case, Lemma 5.6 implies a loss of c0|f̂(α)| (which is also at least c0|f̂(β)|)
in the L1 norm, where c0 is an absolute constant.

This completes the proof of Item 1 of the claim.

Since multiplication by ω rotates f̂(β) by 2π/p, there exist at least bp/3c values for λ ∈ Zp such
that |θ| would be at most π/3. By the above discussion each such choice for λ implies a loss of
c0|f̂(α)| to the L1 norm of f , which completes the proof of Item 2.

Next, we prove Item 3. Let C = C(π/p) = (1 − cos(π/p))/2 = Θ(1/p2) as in Lemma 5.3. We
distinguish between two cases: The first case we consider is α 6= 0. In this case, by the fact the f
is real-valued |f̂(−α)| = |f̂(α)|. Thus, the second largest Fourier coefficient β is β = −α and by
Item 1, restricting on χη = ωλ, for any λ ∈ Zp, yields

‖ ̂f |χη=ωλ‖1 ≤ ‖f̂‖1 − c0 · |f̂(α)|, (17)

which implies Item 3 for this case.
The second case is that |f̂(0)| is the largest Fourier coefficient in absolute value. In this case

β 6= 0, and η = β. By the assumption ‖f̂‖1 > 1, we have |f̂(β)| > 0. We define the weight of a pair

{γ, γ − β} ⊆ Znp to be w(γ) = min
{
|f̂(γ)|, |f̂(γ − β)|

}
, and denote

W =
∑
γ 6=0,β

w(γ).

Thus By Lemma 5.4, we have
2|f̂(0)| ≤W. (18)

Note that when restricting f on χβ = ωλ, f̂(γ) and f̂(γ − β) collapse to the same coefficient. The

new coefficient becomes |f̂(γ) + ωλf̂(γ + β) + · · · + ωλ(p−1)f̂(γ + (p − 1)β)|. We analyze only the
loss in the L1 norm obtained from the collapse of f̂(γ) and f̂(γ + (p− 1)β) = f̂(γ− β) to the same
coefficient. Let θ be the angle between f̂(γ) and f̂(γ − β). Since multiplication by ω is equivalent
to rotation by 2π/p, as λ traverses over 0, 1, ..., p− 1, the angle between f̂(γ) and ωλ(p−1)f̂(γ − β)
attains all possible values θ + 2κπ/p for κ = 0, 1, ..., p − 1. Hence, there exists at most one choice
of λ such that the angle between f̂(γ) and ωλ(p−1)f̂(γ−β) is less than π/p (in absolute value). We
call λ ∈ Zp good with respect to γ if the angle between f̂(γ) and ωλ(p−1)f̂(γ − β) is at least π/p. If
we fix β, then for every pair {γ, γ − β} there exist at least p− 1 good elements in Zp. Intuitively,

each element λ which is good guarantees a loss of at least C ·min{|f̂(γ)|, |f̂(γ − β)|} = Cw(γ) in
the spectral norm (the actual analysis, which will now follow, is a bit more delicate).
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Consider now the matrix M whose rows are indexed by elements γ ∈ Znp for all γ 6= 0, β, and
whose columns are indexed by all elements λ ∈ Zp. We define:

Mγ,λ =

{
w(γ) if λ is good with respect to γ

0 otherwise
.

Since for every γ there are at least p− 1 good elements, we have∑
γ,λ

Mγ,λ ≥ (p− 1)
∑
γ 6=0,β

w(γ) = (p− 1)W. (19)

While for every fixed column λ0, ∑
γ

Mγ,λ0 ≤W. (20)

As there are p columns, (19) and (20) together imply that there is at most one column in which
the total weight is less than W/2, i.e. for all λ ∈ Zp but at most one, it holds that∑

γ

Mγ,λ ≥W/2 . (21)

Every element λ ∈ Zp which satisfies (21) will be called good. We thus proved the existence of at
least p− 1 good elements λ.

We now fix a good element λ and consider the restriction χβ = ωλ. By Lemma 5.5, the loss of
the spectral norm under this restriction is at least

1/3 ·
∑
γ

|f̂(γ)|+ |f̂(γ − β)| − |f̂(γ) + ωλ(p−1)f̂(γ − β)|,

which is, by Lemma 5.3 and the definition of Mλ,γ , at least

1/3 ·
∑

γ:λ is good w.r.t. γ

C ·min
{
|f̂(γ)|, |f̂(γ − β)|

}
=

1/3 ·
∑
γ

C ·Mγ,λ ≥ C ·W/6 ≥ |f̂(0)| · C/3,

where we used (21) and (18) for the penultimate and last inequalities, respectively. Letting
c1 = C/3 completes the proof of the lemma.

5.3 Analogs of Theorems 1.1, 1.2, 1.4 and 1.5

Theorems 5.7, 5.8, 5.10 and 5.11 now follow as consequences of Lemma 5.1. Their proofs use the
same arguments we used to deduce their Zn2 counterparts from Lemma 3.1. We use the notation
Op(·) when the underlying constant depends on p, whereas when we use O(·), the underlying
constant is some absolute constant.

Theorem 5.7. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then there exists an
affine subspace V ⊆ Znp of co-dimension at most O(A2) such that f is constant on V .

Proof. Apply Lemma 5.1 iteratively on f . By assumption p > 2, so bp/3c ≥ 1, and then using
Item 2 of the lemma, after at most A2/c0 steps, we are left with a function g which is a restriction
of f on an affine subspace defined by the restrictions so far, such that ‖ĝ‖1 = 1. By Lemma 5.2
g = ±1.
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Theorem 5.8. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then size⊕p(f) ≤
pOp(A

2)nOp(A).

Proof. By Lemma 5.1, there is a constant 0 < c ≤ 1 (where c := min{c0, c1, 1} depends only on p), a

linear function γ ∈ Znp and λ1, ..., λp−1 ∈ Zp such that ‖ ̂f |
χγ=ω

λj ‖1 ≤ A−c|f̂(α)| for all 1 ≤ j ≤ p−1.

Furthermore, for the p-th direction λp, the same lemma shows that ‖ ̂f |χγ=ωλp‖1 ≤ A−c|f̂(β)| where

f̂(β) is the second largest coefficient.
As before, let

L(n,A)
def
= max

f :Znp→{+1,−1}
‖f̂‖1≤A

size⊕pf.

We show, by induction on n, that L(n,A) ≤ p2A2/cn2A/c. For n = 1 the result is trivial. Let n > 1
and further assume that A > 1 (if A = 1 then the claim follows from Lemma 5.2).

As in the proof of Theorem 1.2, we consider two cases:

1. |f̂(α)| ≥ 1/2

2. 1/2 > |f̂(α)| ≥ 1/A and |f̂(β)| > 1−|f̂(α)|2
A ≥ 3

4A .

We again consider the tree whose first query is the linear function χγ . In the first case, by the
choice of γ we obtain the following recursion:

L(n,A) ≤ (p− 1)L(n− 1, A− c/2) + L(n− 1, A).

The induction hypothesis then implies (using the assumption that A > 1)

L(n,A) ≤ (p− 1)p2(A−c/2)
2/c(n− 1)2(A−c/2)/c + p2A

2/c(n− 1)2A/c

≤ (p− 1)p2(A
2/c)−1(n− 1)2A/c−1 + p2A

2/c(n− 1)2A/c

≤ p2A2/c(n− 1)2A/c−1 (1 + (n− 1))

≤ p2A2/cn2A/c.

While in the second case, we have the recurrence

L(n,A) ≤ (p− 1)L(n− 1, A− c/A) + L(n− 1, A− 3c/(4A))

≤ p · L(n− 1, A− 3c/(4A))

Again, the induction hypothesis implies (using the assumption that A > 1, c ≤ 1)

L(n,A) ≤ p · p2(A−3c/(4A))2/c(n− 1)2(A−(3c/(4A)))/c

≤ n2A/c · p1+2A2/c−3+18c/(16A2)

≤ n2A/c · p2A2/c .

As an immediate corollary, we get:

Corollary 5.9. Let f : Znp → {+1,−1} be a Boolean function with ‖f̂‖1 = A. Then f =∑pOp(A
2)nOp(A)

i=1 ±1Vi, where each Vi is an affine subspace of Znp .
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Theorem 5.10. Let f : Znp → {+1,−1} be such that ‖f̂‖1 = A and |{α | f̂(α) 6= 0}| = s. Then f
can be computed by a ⊕p-DT of depth O(A2 log s).

Proof. By Theorem 5.7, there exist K = O(A2) linear functions α1, . . . , αK which can be fixed to
values ωλ1 , . . . , ωλK where λj ∈ Zp for 1 ≤ j ≤ K, such that f restricted to the affine subspace {x |
χαj (x) = ωλj , ∀1 ≤ j ≤ K} is constant. Once again, this implies that for any non-zero coefficient

f̂(β) there exists at least one other non-zero coefficient f̂(β+γ) for γ ∈ span{α1, . . . , αK}, since if no
such coefficient exists then the restriction f |χα1 (x)=ωλ1 ,...,χαK=ωλk will have the non-constant term

f̂(β) · χβ. Therefore, for any other fixing of χα1 , . . . , χαK , both f̂(β)χβ and f̂(β + γ)χβ+γ collapse
to the same (perhaps non-zero) linear function, which implies that spar(f |

χα1=ω
λ′1 ,...,χαK=ω

λ′
K

) ≤
spar(f)/2 for any choice of λ′1, . . . , λ

′
K . Thus, we can continue by induction until all the functions

in the leaves are constant.

Theorem 5.11. Let f : Znp → {+1,−1} be such that ‖f̂‖1 = A. Then for every δ, ε > 0 there is
a randomized algorithm that given a query oracle to f outputs (with probability at least 1 − δ) a
⊕p-DT of depth O(A2 + log(1/ε)) and size min{pO(A2+log(1/ε)), pOp(A

2) ·O(A2 + log(1/ε))Op(A)} that
computes a Boolean function gε such that dist(f, gε) ≤ ε. The algorithm runs in polynomial time
in n, exp(A2), 1/ε and log(1/δ).

The proof of Theorem 5.11 follows the same outline as the proof of Theorem 1.5. The bias of
a function f : Znp → {+1,−1} is defined as in the binary case. We again show there exists a low
depth ⊕−DT which computes a function g such that Prx[f(x) 6= g(x)] ≤ ε (where x is drawn from
the uniform distribution over Znp ).

Lemma 5.12. Let f : Zn2 → {+1,−1} be a Boolean function with ‖f̂‖1 ≤ A. Then there exists a ⊕-
DT of depth at most O(A2+log(1/ε)) and size min{pO(A2+log(1/ε)), pOp(A

2) ·O(A2+log(1/ε))Op(A)},
computing a function g such that Prx[f(x) 6= g(x)] ≤ ε.

Proof. The proof is essentially the same as the proof of Lemma 3.6, taking K = 20
c0

(A2 + log(1/ε)),

where c0 is as in Lemma 5.1. Note that in this case, if |f̂(α)| > 1− ε, then since |f̂(α)| = |f̂(−α)|,
by Parseval’s identity, if ε < (1 − 1/

√
2) then this can only happen if α = 0, hence f is already

highly biased. Furthermore, for a random x ∈ Znp and fixed γ ∈ Znp , Lemma 5.1 implies a node

labeled χγ is norm reducing (by an absolute constant c0/A) for x with probability bp/3c
p ≥ 1/5,

hence a similar argument to the one used in Lemma 3.6 shows that a random input x arrives at an
unbiased leaf with probability at most ε.

The bound on the tree size, which is min{pK , 2Op(A2) ·KOp(A)}, also follows in the same way
as in the proof of Lemma 3.6, using a similar recursion formula whose solution is similar to the
formula in Theorem 5.8.

Finally, we note that although this result is not explicitly stated in [KM93], the algorithm
from Algorithm 3.7 can be modified in a straightforward way to work equally well for functions
f : Znp → {+1,−1}, with virtually the same proof.

Theorem 5.11. We use the algorithm from Algorithm 3.7 to find f ’s largest Fourier coefficient in
absolute value, f̂(α). Whenever |f̂(α)| ≤ 1− ε, the same algorithm can be used to find the second
largest coefficient, f̂(β), in polynomial time (in n, 1/ε and log(1/δ)). We use Lemma 5.12 to
construct a ⊕p-DT.

We again mention, as in the proof of Theorem 1.5, that we do not need to calculate f̂(α) and
f̂(β) exactly, but only to within an error of, say, ε/(2pA), which can be guaranteed (with high
probability) by the algorithm of Algorithm 3.7.
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5.4 Proof of Lemma 5.5

Proof. It is enough to show that on every coset γ ∈ Znp/〈η〉:

3 ·

(
p−1∑
k=0

∣∣∣f̂(γ + kη)
∣∣∣− ∣∣∣∣∣

p−1∑
k=0

f̂(γ + kη)ωλk

∣∣∣∣∣
)
≥

p−1∑
k=0

(
|f̂(γ + kη)|+ |f̂(γ + (k + 1)η)| −

|f̂(γ + kη) + f̂(γ + (k + 1)η)ωλ|
)
. (22)

Fix a coset γ. For k = 0, . . . , p− 1 denote by zk
def
= f̂(γ + kη) · ωλk. Rewriting Equation (22) under

this notation gives

3 ·

(
p−1∑
k=0

|zk · ω−λk| −

∣∣∣∣∣
p−1∑
k=0

zk

∣∣∣∣∣
)
≥

p−1∑
k=0

(
|zk · ω−λk|+ |zk+1 · ω−λ(k+1)| −

|zk · ω−λk + zk+1 · ω−λk|
)
.

Since multiplying by ω−λk does not change the norm, this is equivalent to

3 ·

(
p−1∑
k=0

|zk| −

∣∣∣∣∣
p−1∑
k=0

zk

∣∣∣∣∣
)
≥

p−1∑
k=0

|zk|+ |zk+1| − |zk + zk+1| . (23)

We break the right hand side of Equation (23) into 3 sums:

1.
∑

k∈{0,2,4,...,p−3} |zk|+ |zk+1| − |zk + zk+1|

2.
∑

k∈{1,3,5,...,p−2} |zk|+ |zk+1| − |zk + zk+1|

3.
∑

k∈{p−1} |zk|+ |zk+1| − |zk + zk+1|

Each sum goes over a disjoint set of pairs (k, k + 1). Next, we show that each sum is at most∑p−1
k=0 |zk| −

∣∣∣∑p−1
k=0 zk

∣∣∣, completing the proof. We claim in general that if A ⊆ {0, . . . , p − 1} is a

subset such that 1 +A = {1 + a mod p : a ∈ A} is disjoint of A, then

∑
k∈A
|zk|+ |zk+1| − |zk + zk+1| ≤

p−1∑
k=0

|zk| −

∣∣∣∣∣
p−1∑
k=0

zk

∣∣∣∣∣ .
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Let B := {0, 1, . . . , p− 1} \ (A∪ (1 +A)), then A∪ (1 +A)∪B is a disjoint union of {0, . . . , p− 1}
and we have: ∑

k∈A
|zk|+ |zk+1| − |zk + zk+1|

=
∑
k∈A
|zk|+ |zk+1|+

∑
k∈B
|zk| −

∑
k∈B
|zk| −

∑
k∈A
|zk + zk+1|

=
∑
k∈A
|zk|+

∑
k∈1+A

|zk|+
∑
k∈B
|zk| −

∑
k∈B
|zk| −

∑
k∈A
|zk + zk+1|

=

p−1∑
k=0

|zk| −
∑
k∈B
|zk| −

∑
k∈A
|zk + zk+1|

≤
p−1∑
k=0

|zk| −

∣∣∣∣∣∑
k∈B

zk +
∑
k∈A

zk + zk+1

∣∣∣∣∣
=

p−1∑
k=0

|zk| −

∣∣∣∣∣∑
k∈B

zk +
∑
k∈A

zk +
∑

k∈1+A
zk

∣∣∣∣∣
=

p−1∑
k=0

|zk| −

∣∣∣∣∣
p−1∑
k=0

zk

∣∣∣∣∣ ,
where in the (only) inequality we used the triangle inequality.

6 Conclusions and open problems

In this work we obtained structural results for Boolean functions over Znp , for prime p. Our results
provide a more refined structure than the one given in the works of Green and Sanders [GS08a,
GS08b]. For a certain range of parameters we also obtain improved results in the setting of the
works [GS08a, GS08b].

We were also able to achieve new results in the field of computational learning theory by showing
that such functions can be learned with ⊕-DTs as the class of hypotheses.

There are still many intriguing open problems related to the structure of Boolean functions
with small spectral norm. Most of these are related to the tightness of our results (as well as to
the tightness of the results of Green and Sanders [GS08a]).

We do not believe that the bound given in Equation (2) is tight. Perhaps it is even true that
one could represent f as a sum of polynomially (in A) many characteristic functions of subspaces
(note that this is not true for functions over general abelian groups. See [GS08b]). Similarly, we do
not believe that the bounds we obtain in Theorems 1.2 and 5.8 are tight. It seems more reasonable
to believe that the true bound should be poly(n,A).

Recall that [ZS10, MO09] conjectured that Boolean functions with sparse Fourier spectrum can
be computed by a ⊕-DT of depth poly(log spar(f)). Theorems 1.4 and 5.10 give an affirmative
answer only for the case that f also has a small spectral norm. Thus, the general case is still open.

Finally, Theorems 1.5 and 5.11 give shallow⊕p-DTs approximating functions with small spectral
norm. These results too do not seem tight. In particular, it is interesting to understand whether
something better can be obtained if we assume in addition that f can be computed exactly by a small
⊕p-DT. Namely, can one output a shallow ⊕p-DT approximating f over the uniform distribution
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using polynomially many membership queries (i.e. oracle calls) to f , assuming that f can be exactly
computed by such a ⊕p-DT (and has a small spectral norm).
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