SUBEXPONENTIAL SIZE HITTING SETS FOR BOUNDED DEPTH MULTILINEAR FORMULAS

Ben Lee Volk (Tel Aviv University)

Joint work with

Rafael Oliveira (Princeton University) Amir Shpilka (Tel Aviv University)

ARITHMETIC FORMULAS

Underlying graph is a tree.

ARITHMETIC FORMULAS

Underlying graph is a tree.

Multilinear Formula: every node computes a multilinear polynomial.

Given $C(x_1,...,x_n)$, decide *deterministically* whether $C \equiv 0$.

Given $C(x_1, ..., x_n)$, decide *deterministically* whether $C \equiv 0$.

White Box

Can "see" the circuit.

Given $C(x_1,...,x_n)$, decide *deterministically* whether $C \equiv 0$.

White Box

Can "see" the circuit.

Black Box

$$\overline{\alpha} \longrightarrow f(x_1, \dots, x_n) \longrightarrow f(\overline{\alpha})$$

Given $C(x_1,...,x_n)$ from a class \mathcal{C} decide *deterministically* whether $C \equiv 0$.

White Box

Can "see" the circuit.

Black Box

$$\overline{\alpha} \longrightarrow f(x_1, \dots, x_n) \longrightarrow f(\overline{\alpha})$$

Given $C(x_1,...,x_n)$ from a class \mathcal{C} decide *deterministically* whether $C \equiv 0$.

Black Box PIT = explicit hitting set. **Hitting Set** for class \mathcal{C} : A set $\mathcal{H} \subseteq \mathbb{F}^n$ such that for every non-zero $f \in \mathcal{C}$ there exists $\overline{\alpha} \in \mathcal{H}$ such that $f(\overline{\alpha}) \neq 0$.

PIT for bounded depth circuits:

Model Running time

Model	Running time	
Depth 3 circuits Bounded top fan-in	Poly time, BB	[Kayal-Saraf], [Saxena-Seshadri]

Model	Running time	
Depth 3 circuits Bounded top fan-in	Poly time, BB	[Kayal-Saraf], [Saxena-Seshadri]
Multilinear Depth 4, Bounded top fan-in	Poly time, BB	[Saraf-Volkovich]

Model	Running time	
Depth 3 circuits Bounded top fan-in	Poly time, BB	[Kayal-Saraf], [Saxena-Seshadri]
Multilinear Depth 4, Bounded top fan-in	Poly time, BB	[Saraf-Volkovich]
Multilinear Depth 3, Bounded <i>distance</i>	Quasi-poly, BB	[Agrawal-Gurjar- Korwar-Saxena]

Model	Running time	
Depth 3 circuits Bounded top fan-in	Poly time, BB	[Kayal-Saraf], [Saxena-Seshadri]
Multilinear Depth 4, Bounded top fan-in	Poly time, BB	[Saraf-Volkovich]
Multilinear Depth 3, Bounded <i>distance</i>	Quasi-poly, BB	[Agrawal-Gurjar- Korwar-Saxena]
and many others)		

Hitting sets for bounded depth multilinear formulas, with

Hitting sets for bounded depth multilinear formulas, with

 $|\mathcal{H}| = 2^{\tilde{O}(n^{2/3+2\delta/3})}$ for depth 3 formulas of size $2^{n^{\delta}}$

Hitting sets for bounded depth multilinear formulas, with

 $\begin{aligned} |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+2\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+4\delta/3})} \end{aligned}$

for depth 3 formulas of size $2^{n^{\delta}}$ for depth 4 formulas of size $2^{n^{\delta}}$

Hitting sets for bounded depth multilinear formulas, with

$$\begin{split} |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+2\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+4\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{1-1/\exp(d)})} \end{split}$$

for depth 3 formulas of size $2^{n^{\delta}}$ for depth 4 formulas of size $2^{n^{\delta}}$ for *regular*^{*} depth *d* formulas of size $2^{n^{1/\exp(d)}}$

*All nodes in the same layer have the same fan-in.

Hitting sets for bounded depth multilinear formulas, with

$$\begin{split} |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+2\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+4\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{1-1/\exp(d)})} \end{split}$$

for depth 3 formulas of size $2^{n^{\delta}}$ for depth 4 formulas of size $2^{n^{\delta}}$ for *regular*^{*} depth *d* formulas of size $2^{n^{1/\exp(d)}}$

*All nodes in the same layer have the same fan-in.

All constructible in time $poly(|\mathcal{H}|)$.

Hitting sets for bounded depth multilinear formulas, with

$$\begin{split} |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+2\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+4\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{1-1/\exp(d)})} \end{split}$$

for depth 3 formulas of size $2^{n^{\delta}}$ for depth 4 formulas of size $2^{n^{\delta}}$ for *regular*^{*} depth *d* formulas of size $2^{n^{1/\exp(d)}}$

*All nodes in the same layer have the same fan-in.

All constructible in time $poly(|\mathcal{H}|)$.

 \Rightarrow lower bounds of $2^{\tilde{\Omega}(n^{1/2})}$ (depth 3), $2^{\tilde{\Omega}(n^{1/4})}$ (depth 4) and $2^{\tilde{\Omega}(n^{1/\exp(d)})}$ (depth *d*) for polynomials in DTIME($2^{O(n)}$).

Hitting sets for bounded depth multilinear formulas, with

$$\begin{split} |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+2\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{2/3+4\delta/3})} \\ |\mathcal{H}| &= 2^{\tilde{O}(n^{1-1/\exp(d)})} \end{split}$$

for depth 3 formulas of size $2^{n^{\delta}}$ for depth 4 formulas of size $2^{n^{\delta}}$ for *regular*^{*} depth *d* formulas of size $2^{n^{1/\exp(d)}}$

*All nodes in the same layer have the same fan-in.

All constructible in time $poly(|\mathcal{H}|)$.

⇒ lower bounds of $2^{\tilde{\Omega}(n^{1/2})}$ (depth 3), $2^{\tilde{\Omega}(n^{1/4})}$ (depth 4) and $2^{\tilde{\Omega}(n^{1/\exp(d)})}$ (depth *d*) for polynomials in DTIME($2^{O(n)}$). (slightly better lower bounds known but not via hitting sets)

"Reduction" to Read Once Algebraic Branching Program:

"Reduction" to Read Once Algebraic Branching Program:

- Each $s \rightarrow t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \rightarrow t$ paths
- *Read Once*: Variable *x_i* read only at level *i*

"Reduction" to Read Once Algebraic Branching Program:

- Each $s \rightarrow t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \rightarrow t$ paths
- *Read Once*: Variable *x_i* read only at level *i*

"Reduction" to Read Once Algebraic Branching Program:

Theorem [FS13, FSS14, AGKS14]: \exists explicit hitting set for ROABPs of width *w* of size poly(*n*, *w*)^{*O*(log *n*)}.

Sum of products of linear functions with disjoint support:

Sum of products of linear functions with disjoint support:

... if every linear function has only 1 variable in its support, the polynomial is computed by width M ROABP.

What if we had a partition $S_1, ..., S_k$ such that all the vars in S_i appear in different linear functions? (for every × gate and for every *i*)

What if we had a partition $S_1, ..., S_k$ such that all the vars in S_i appear in different linear functions? (for every × gate and for every *i*)

Think of the polynomial in the vars of S_1 over $\mathbb{F}(S_2 \cup \cdots \cup S_k)$.

What if we had a partition $S_1, ..., S_k$ such that all the vars in S_i appear in different linear functions? (for every × gate and for every *i*)

Think of the polynomial in the vars of S_1 over $\mathbb{F}(S_2 \cup \cdots \cup S_k)$. It has ROABP of width *M*. Plug in hitting set on the vars of S_1 .

What if we had a partition $S_1, ..., S_k$ such that all the vars in S_i appear in different linear functions? (for every × gate and for every *i*)

Think of the polynomial in the vars of S_1 over $\mathbb{F}(S_2 \cup \cdots \cup S_k)$. It has ROABP of width M. Plug in hitting set on the vars of S_1 .

∃ assignment which keeps the polynomial non-zero.

What if we had a partition $S_1, ..., S_k$ such that all the vars in S_i appear in different linear functions? (for every × gate and for every *i*)

Think of the polynomial in the vars of S_1 over $\mathbb{F}(S_2 \cup \cdots \cup S_k)$. It has ROABP of width *M*. Plug in hitting set on the vars of S_1 .

∃ assignment which keeps the polynomial non-zero.

Now do the same for S_2, S_3, \ldots
Plan:

 Partition the variables into n^{1-ε} disjoint sets S₁,..., S_{n^{1-ε}}, and hope that the intersection of every linear function with every S_i contains at most 1 variable

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_i contains at most 1 variable
- Plug in hitting sets for width *M* ROABPs on the variables of each *S*_i

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_i contains at most 1 variable
- Plug in hitting sets for width *M* ROABPs on the variables of each *S*_i

If all linear functions in the circuit had small support we might expect a random partition to work.

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_i contains at most 1 variable
- Plug in hitting sets for width *M* ROABPs on the variables of each *S*_i

If all linear functions in the circuit had small support we might expect a random partition to work.

Problems:

- What about linear functions which contain a lot of variables?
- How to find the partition?

Solution to Problem #1: get rid of linear functions with large support (more than n^{ε} is a problem)

Solution to Problem #1: get rid of linear functions with large support (more than n^{ε} is a problem)

 $\ell_1(\overline{\mathbf{x}}) = \sum_i \alpha_i x_i$

Solution to Problem #1: get rid of linear functions with large support (more than n^{ε} is a problem)

 $\ell_1(\overline{\mathbf{x}}) = \sum_i \alpha_i x_i$

• Only care about linear functions with $\ge n^{\varepsilon}$ vars, so \exists var x_i which works for $1/n^{1-\varepsilon}$ of them.

- Only care about linear functions with ≥ n^ε vars, so ∃ var x_i which works for 1/n^{1-ε} of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \implies no linear function remaining with more than n^{ε} vars.

- Only care about linear functions with $\ge n^{\varepsilon}$ vars, so \exists var x_i which works for $1/n^{1-\varepsilon}$ of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \implies no linear function remaining with more than n^{ε} vars.

How to get black box access to $\frac{\partial f}{\partial x_{i_1} \cdots \partial x_{i_t}}$?

- Only care about linear functions with ≥ n^ε vars, so ∃ var x_i which works for 1/n^{1-ε} of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \implies no linear function remaining with more than n^{ε} vars.

How to get black box access to $\frac{\partial f}{\partial x_{i_1} \cdots \partial x_{i_t}}$?

$$\frac{\partial f}{\partial x_i} = f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n).$$

- Only care about linear functions with ≥ n^ε vars, so ∃ var x_i which works for 1/n^{1-ε} of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \implies no linear function remaining with more than n^{ε} vars.

How to get black box access to $\frac{\partial f}{\partial x_{i_1} \cdots \partial x_{i_t}}$?

$$\frac{\partial f}{\partial x_i} = f(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n).$$

Applied repeatedly, each query to the derivative is simulated by 2^t queries to f.

Solution to Problem #2: Settle for less.

Solution to Problem #2: Settle for less.

Assume all linear functions have support $\leq n^{\varepsilon}$. If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_i :

1. No linear function intersects S_i in more than n^{δ} vars.

Solution to Problem #2: Settle for less.

Assume all linear functions have support $\leq n^{\varepsilon}$. If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_i :

- 1. No linear function intersects S_i in more than n^{δ} vars.
- 2. On every × gate, the # of linear functions which intersect S_i in at least 2 vars is at most n^{δ} .

Solution to Problem #2: Settle for less.

Assume all linear functions have support $\leq n^{\varepsilon}$. If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_i :

- 1. No linear function intersects S_i in more than n^{δ} vars.
- 2. On every × gate, the # of linear functions which intersect S_i in at least 2 vars is at most n^{δ} .

Brute-force expand linear functions of the second type to get ROABP of width $M \cdot n^{n^{\delta}}$ in vars of S_i .

Solution to Problem #2: Settle for less.

Assume all linear functions have support $\leq n^{\varepsilon}$. If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_1, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_i :

- 1. No linear function intersects S_i in more than n^{δ} vars.
- 2. On every × gate, the # of linear functions which intersect S_i in at least 2 vars is at most n^{δ} .

Brute-force expand linear functions of the second type to get ROABP of width $M \cdot n^{n^{\delta}}$ in vars of S_i .

Deterministic version: Partition vars according to n^{δ} -wise independent family of hash functions.

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of *f* with respect to those vars

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

Cost: $n^{n^{\delta}}$

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

Cost: $n^{n^{\delta}}$

3. Plug in a copy of the ROABP hitting set for each set S_i

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

Cost: $n^{n^{\delta}}$

3. Plug in a copy of the ROABP hitting set for each set S_i

Cost: $(M \cdot n^{n^{\delta}})^{\log n \cdot n^{1-\varepsilon}}$

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of *f* with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

Cost: $n^{n^{\delta}}$

3. Plug in a copy of the ROABP hitting set for each set S_i Cost: $(M \cdot n^{n^{\delta}})^{\log n \cdot n^{1-\epsilon}}$

Optimizing parameters: $|\mathcal{H}| = 2^{\tilde{O}(n^{2/3+2\delta/3})}$.

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

Cost: $\binom{n}{n^{1-\varepsilon}\log M} \cdot 2^{n^{1-\varepsilon}\log M}$

2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ} -wise indep. family of hash functions

Cost: $n^{n^{\delta}}$

3. Plug in a copy of the ROABP hitting set for each set S_i Cost: $(M \cdot n^{n^{\delta}})^{\log n \cdot n^{1-\epsilon}}$

Optimizing parameters: $|\mathcal{H}| = 2^{\tilde{O}(n^{2/3+2\delta/3})}$. Lower bound: set $\delta = 1/2 - O(\log \log n / \log n)$. Find non-zero polynomial which vanishes over \mathcal{H} .

Sum of products of sparse polynomials with disjoint support:

Sum of products of sparse polynomials with disjoint support:

... what has changed?

• Can't get rid f₁ by taking a derivative according to x₁

- Can't get rid f₁ by taking a derivative according to x₁
- But: for every multilinear polynomial *f* and variable *x*, either setting *x* = 0 or taking derivative with respect to *x* reduces the sparsity by at least half

- Can't get rid f_1 by taking a derivative according to x_1
- But: for every multilinear polynomial *f* and variable *x*, either setting *x* = 0 or taking derivative with respect to *x* reduces the sparsity by at least half
- Similar argument as before: we only care about *high-support* polynomials. $\exists \text{ var } x_i \text{ such that either in } f|_{x_i=0}$ or $\frac{\partial f}{\partial x_i}$ the total sparsity of bad polynomials is reduced by a factor of $1 \frac{1}{2n^{1-\varepsilon}}$

- Can't get rid f_1 by taking a derivative according to x_1
- But: for every multilinear polynomial *f* and variable *x*, either setting *x* = 0 or taking derivative with respect to *x* reduces the sparsity by at least half
- Similar argument as before: we only care about high-support polynomials. ∃ var x_i such that either in f|_{xi=0} or ∂f/∂x_i the total sparsity of bad polynomials is reduced by a factor of 1 1/(2n^{1-ε})
- Repeat O(n^{1-ε} log s) times to eliminate all high-support polynomials

- Can't get rid f_1 by taking a derivative according to x_1
- But: for every multilinear polynomial *f* and variable *x*, either setting *x* = 0 or taking derivative with respect to *x* reduces the sparsity by at least half
- Similar argument as before: we only care about high-support polynomials. ∃ var x_i such that either in f|_{xi=0} or ∂f/∂x_i the total sparsity of bad polynomials is reduced by a factor of 1 1/(2n^{1-ε})
- Repeat O(n^{1-ε} log s) times to eliminate all high-support polynomials
- Continue as before

REGULAR BOUNDED-DEPTH FORMULAS

[KSS14]

Fan in a_1

Fan in p_1

Fan in a_2

REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_1

Fan in p_1

Fan in a_2

• d+1 levels labeled '+', d labeled '×'

REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_1

Fan in p_1

Fan in a_2

- *d*+1 levels labeled '+', *d* labeled '×'
- Total degree: $\prod_{i=1}^{d} p_i$
REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_1

Fan in p_1

Fan in a_2

- *d*+1 levels labeled '+', *d* labeled '×'
- Total degree: $\prod_{i=1}^{d} p_i$

(actually fan-in of + gates is not that important)

upper part: expand all products from level *k* upwards, at most $|C|^{\prod_{i=1}^{k} p_i}$ summands

lower part: $deg \le n^{1-1/\exp(d)}$ "sparse" polynomial replace w/ subexp. $\Sigma\Pi$ ckt

upper part: expand all products from level k upwards, at most $|C|^{\prod_{i=1}^{k} p_i}$ summands

lower part: $deg \le n^{1-1/\exp(d)}$ "sparse" polynomial replace w/ subexp. $\Sigma\Pi$ ckt

upper part: expand all products from level k upwards, at most $|C|^{\prod_{i=1}^{k} p_i}$ summands

lower part: $deg \le n^{1-1/\exp(d)}$ "sparse" polynomial replace w/ subexp. $\Sigma\Pi$ ckt

such a large gap is required to match the depth 4 parameters. will be nice to improve.

• Smaller hitting sets for depth 3 and depth 4 formulas.

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth *d* case

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth *d* case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth *d* case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

• non-reg depth *d* formulas?

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth *d* case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

• non-reg depth *d* formulas?

THANK YOU