
Subexponential Size Hitting Sets
for

Bounded Depth Multilinear Formulas

Ben Lee Volk (Tel Aviv University)
Joint work with

Rafael Oliveira (Princeton University)
Amir Shpilka (Tel Aviv University)

Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3)

Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3)

Size = number of gates

Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3)

Depth

Arithmetic Circuits

x1 x2 x3 1

+ + + + + +

× × ×

+

f (x1, x2, x3)

Σ

Π

Σ

Arithmetic Formulas
Underlying graph is a tree.

x1 x2 x3 x1 x2 x4 x5

+ +

× ×

+

Arithmetic Formulas
Underlying graph is a tree.

x1 x2 x3 x1 x2 x4 x5

+ +

× ×

+

Multilinear Formula: every node computes a multilinear
polynomial.

Polynomial Identity Testing
Given C (x1, . . . , xn),
decide deterministically whether C ≡ 0.

Polynomial Identity Testing
Given C (x1, . . . , xn),
decide deterministically whether C ≡ 0.

White Box

Can “see” the circuit.

Polynomial Identity Testing
Given C (x1, . . . , xn),
decide deterministically whether C ≡ 0.

White Box

Can “see” the circuit.

Black Box

f (x1, . . . , xn)α f (α)

Polynomial Identity Testing
Given C (x1, . . . , xn) from a class C

decide deterministically whether C ≡ 0.

White Box

Can “see” the circuit.

Black Box

f (x1, . . . , xn)α f (α)

Polynomial Identity Testing
Given C (x1, . . . , xn) from a class C

decide deterministically whether C ≡ 0.

White Box

Can “see” the circuit.

Black Box

f (x1, . . . , xn)α f (α)

Black Box PIT ≡ explicit hitting set.
Hitting Set for class C: A set H⊆ Fn such that for every
non-zero f ∈C there exists α ∈H such that f (α) ̸= 0.

Related Work
PIT for bounded depth circuits:

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

Related Work
PIT for bounded depth circuits:

Model Running time

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

Related Work
PIT for bounded depth circuits:

Model Running time

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

Related Work
PIT for bounded depth circuits:

Model Running time

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

Related Work
PIT for bounded depth circuits:

Model Running time

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

Related Work
PIT for bounded depth circuits:

Model Running time

Depth 3 circuits Poly time, BB [Kayal-Saraf],
Bounded top fan-in [Saxena-Seshadri]

Multilinear Depth 4, Poly time, BB [Saraf-Volkovich]
Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB [Agrawal-Gurjar-
Bounded distance Korwar-Saxena]

(and many others)

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

*All nodes in the same layer have the same fan-in.

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

*All nodes in the same layer have the same fan-in.

All constructible in time poly(|H|).

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

*All nodes in the same layer have the same fan-in.

All constructible in time poly(|H|).

=⇒ lower bounds of 2Ω̃(n1/2) (depth 3), 2Ω̃(n1/4) (depth 4) and
2Ω̃(n1/exp(d)) (depth d) for polynomials in DTIME(2O(n)).

This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

*All nodes in the same layer have the same fan-in.

All constructible in time poly(|H|).

=⇒ lower bounds of 2Ω̃(n1/2) (depth 3), 2Ω̃(n1/4) (depth 4) and
2Ω̃(n1/exp(d)) (depth d) for polynomials in DTIME(2O(n)).
(slightly better lower bounds known but not via hitting sets)

Proof Technique
“Reduction” to Read Once Algebraic Branching Program:

s ...

x1 −1

x1 +2

x1 +9

...

x2 +1

3x2 · · · ...
t

2xn −2

xn −4

xn

Proof Technique
“Reduction” to Read Once Algebraic Branching Program:

s ...

x1 −1

x1 +2

x1 +9

...

x2 +1

3x2 · · · ...
t

2xn −2

xn −4

xn

• Each s → t path computes multiplication of edge labels
• Program computes the sum of those over all s → t paths
• Read Once: Variable xi read only at level i

Proof Technique
“Reduction” to Read Once Algebraic Branching Program:

s ...

x1 −1

x1 +2

x1 +9

...

x2 +1

3x2 ...
t

2xn −2

xn −4

xnWidth

• Each s → t path computes multiplication of edge labels
• Program computes the sum of those over all s → t paths
• Read Once: Variable xi read only at level i

Proof Technique
“Reduction” to Read Once Algebraic Branching Program:

s ...

x1 −1

x1 +2

x1 +9

...

x2 +1

3x2 ...
t

2xn −2

xn −4

xnWidth

Theorem [FS13, FSS14, AGKS14]: ∃ explicit hitting set for
ROABPs of width w of size poly(n, w)O(logn).

Depth 3 Multilinear Formulas: ΣΠΣ

Sum of products of linear functions with disjoint support:

ℓ1(x) ℓ2(y)

× × · · ·

ℓt (x)

×

+ M ≤ 2nδ

Depth 3 Multilinear Formulas: ΣΠΣ

Sum of products of linear functions with disjoint support:

ℓ1(x) ℓ2(y)

× × · · ·

ℓt (x)

×

+ M ≤ 2nδ

... if every linear function has only 1 variable in its support,
the polynomial is computed by width M ROABP.

Depth 3 Multilinear Formulas: ΣΠΣ

What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i)

Depth 3 Multilinear Formulas: ΣΠΣ

What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i)

Think of the polynomial in the vars of S1 over F(S2 ∪·· ·∪Sk).

Depth 3 Multilinear Formulas: ΣΠΣ

What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i)

Think of the polynomial in the vars of S1 over F(S2 ∪·· ·∪Sk).
It has ROABP of width M . Plug in hitting set on the vars of S1.

Depth 3 Multilinear Formulas: ΣΠΣ

What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i)

Think of the polynomial in the vars of S1 over F(S2 ∪·· ·∪Sk).
It has ROABP of width M . Plug in hitting set on the vars of S1.

∃ assignment which keeps the polynomial non-zero.

Depth 3 Multilinear Formulas: ΣΠΣ

What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i)

Think of the polynomial in the vars of S1 over F(S2 ∪·· ·∪Sk).
It has ROABP of width M . Plug in hitting set on the vars of S1.

∃ assignment which keeps the polynomial non-zero.

Now do the same for S2,S3, . . .

Depth 3 Multilinear Formulas: ΣΠΣ

Plan:
• Partition the variables into n1−ε disjoint sets S1, . . . ,Sn1−ε ,

and hope that the intersection of every linear function with
every Si contains at most 1 variable

• Plug in hitting sets for width M ROABPs on the variables of
each Si

Depth 3 Multilinear Formulas: ΣΠΣ

Plan:
• Partition the variables into n1−ε disjoint sets S1, . . . ,Sn1−ε ,

and hope that the intersection of every linear function with
every Si contains at most 1 variable

• Plug in hitting sets for width M ROABPs on the variables of
each Si

Depth 3 Multilinear Formulas: ΣΠΣ

Plan:
• Partition the variables into n1−ε disjoint sets S1, . . . ,Sn1−ε ,

and hope that the intersection of every linear function with
every Si contains at most 1 variable

• Plug in hitting sets for width M ROABPs on the variables of
each Si

If all linear functions in the circuit had small support we might
expect a random partition to work.

Depth 3 Multilinear Formulas: ΣΠΣ

Plan:
• Partition the variables into n1−ε disjoint sets S1, . . . ,Sn1−ε ,

and hope that the intersection of every linear function with
every Si contains at most 1 variable

• Plug in hitting sets for width M ROABPs on the variables of
each Si

If all linear functions in the circuit had small support we might
expect a random partition to work.

Problems:

• What about linear functions which contain a lot of
variables?

• How to find the partition?

Reducing Bottom Support
Solution to Problem #1: get rid of linear functions with
large support (more than nε is a problem)

ℓ1(x) ℓ2(y)

× ×·· ·
+

f

ℓ1(x) =∑
i αi xi

=⇒
α1

ℓ2(y)

× ×·· ·
+

∂ f

∂x1

Reducing Bottom Support
Solution to Problem #1: get rid of linear functions with
large support (more than nε is a problem)

ℓ1(x) ℓ2(y)

× ×·· ·
+

f

ℓ1(x) =∑
i αi xi

=⇒
α1

ℓ2(y)

× ×·· ·
+

∂ f

∂x1

Reducing Bottom Support
Solution to Problem #1: get rid of linear functions with
large support (more than nε is a problem)

ℓ1(x) ℓ2(y)

× ×·· ·
+

f

ℓ1(x) =∑
i αi xi

=⇒
α1

ℓ2(y)

× ×·· ·
+

∂ f

∂x1

Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.

Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.
• Derive w.r.t ≤ n1−ε log M vars =⇒ no linear function

remaining with more than nε vars.

Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.
• Derive w.r.t ≤ n1−ε log M vars =⇒ no linear function

remaining with more than nε vars.

How to get black box access to ∂ f

∂xi1 · · ·∂xi t

?

Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.
• Derive w.r.t ≤ n1−ε log M vars =⇒ no linear function

remaining with more than nε vars.

How to get black box access to ∂ f

∂xi1 · · ·∂xi t

?

∂ f

∂xi
= f (x1, . . . , xi−1,1, xi+1, . . . , xn)− f (x1, . . . , xi−1,0, xi+1, . . . , xn).

Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.
• Derive w.r.t ≤ n1−ε log M vars =⇒ no linear function

remaining with more than nε vars.

How to get black box access to ∂ f

∂xi1 · · ·∂xi t

?

∂ f

∂xi
= f (x1, . . . , xi−1,1, xi+1, . . . , xn)− f (x1, . . . , xi−1,0, xi+1, . . . , xn).

Applied repeatedly, each query to the derivative is simulated by
2t queries to f .

Variable Partition
Solution to Problem #2: Settle for less.

1. No linear function intersects Si in more than nδ vars.
2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.

Variable Partition
Solution to Problem #2: Settle for less.

Assume all linear functions have support ≤ nε.
If we partition the vars randomly to n1−ε sets S1, . . . ,Sn1−ε , then
with high probability, for every set Si :

1. No linear function intersects Si in more than nδ vars.

2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.

Variable Partition
Solution to Problem #2: Settle for less.

Assume all linear functions have support ≤ nε.
If we partition the vars randomly to n1−ε sets S1, . . . ,Sn1−ε , then
with high probability, for every set Si :

1. No linear function intersects Si in more than nδ vars.
2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.

Variable Partition
Solution to Problem #2: Settle for less.

Assume all linear functions have support ≤ nε.
If we partition the vars randomly to n1−ε sets S1, . . . ,Sn1−ε , then
with high probability, for every set Si :

1. No linear function intersects Si in more than nδ vars.
2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.
Brute-force expand linear functions of the second type to get
ROABP of width M ·nnδ in vars of Si .

Variable Partition
Solution to Problem #2: Settle for less.

Assume all linear functions have support ≤ nε.
If we partition the vars randomly to n1−ε sets S1, . . . ,Sn1−ε , then
with high probability, for every set Si :

1. No linear function intersects Si in more than nδ vars.
2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.
Brute-force expand linear functions of the second type to get
ROABP of width M ·nnδ in vars of Si .

Deterministic version: Partition vars according to nδ-wise
independent family of hash functions.

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars

Cost:
(n

n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions

Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars

Cost:
(n

n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions

Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions

Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions

Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Optimizing parameters: |H| = 2Õ(n2/3+2δ/3).

Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

(n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Optimizing parameters: |H| = 2Õ(n2/3+2δ/3).
Lower bound: set δ= 1/2−O(loglogn/logn). Find non-zero
polynomial which vanishes over H.

Depth 4 Multilinear Formulas: ΣΠΣΠ

Sum of products of sparse polynomials with disjoint support:

f1(x) f2(y)

× × · · ·

ft (x)

×

+ M ≤ 2nδ

Total Sparsity s ≤ |C |

Depth 4 Multilinear Formulas: ΣΠΣΠ

Sum of products of sparse polynomials with disjoint support:

f1(x) f2(y)

× × · · ·

ft (x)

×

+ M ≤ 2nδ

Total Sparsity s ≤ |C |

... what has changed?

Reducing Bottom Support: Depth 4 Version

• Can’t get rid f1 by taking a derivative according to x1

• But: for every multilinear polynomial f and variable x,
either setting x = 0 or taking derivative with respect to x
reduces the sparsity by at least half

• Similar argument as before: we only care about
high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
∂xi

the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials

• Continue as before

Reducing Bottom Support: Depth 4 Version

• Can’t get rid f1 by taking a derivative according to x1

• But: for every multilinear polynomial f and variable x,
either setting x = 0 or taking derivative with respect to x
reduces the sparsity by at least half

• Similar argument as before: we only care about
high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
∂xi

the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials

• Continue as before

Reducing Bottom Support: Depth 4 Version

• Can’t get rid f1 by taking a derivative according to x1

• But: for every multilinear polynomial f and variable x,
either setting x = 0 or taking derivative with respect to x
reduces the sparsity by at least half

• Similar argument as before: we only care about
high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
∂xi

the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials

• Continue as before

Reducing Bottom Support: Depth 4 Version

• Can’t get rid f1 by taking a derivative according to x1

• But: for every multilinear polynomial f and variable x,
either setting x = 0 or taking derivative with respect to x
reduces the sparsity by at least half

• Similar argument as before: we only care about
high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
∂xi

the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials

• Continue as before

Reducing Bottom Support: Depth 4 Version

• Can’t get rid f1 by taking a derivative according to x1

• But: for every multilinear polynomial f and variable x,
either setting x = 0 or taking derivative with respect to x
reduces the sparsity by at least half

• Similar argument as before: we only care about
high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
∂xi

the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials

• Continue as before

Regular Bounded-Depth Formulas

+

×
·· ·

×

Fan in a1

+
·· ·

+ +
·· ·

+

Fan in p1

Fan in a2
...

[KSS14]

2d +1

• d +1 levels labeled ‘+’, d labeled ‘×’
• Total degree: ∏d

i=1 pi

(actually fan-in of + gates is not that important)

Regular Bounded-Depth Formulas

+

×
·· ·

×

Fan in a1

+
·· ·

+ +
·· ·

+

Fan in p1

Fan in a2
...

[KSS14]

2d +1

• d +1 levels labeled ‘+’, d labeled ‘×’

• Total degree: ∏d
i=1 pi

(actually fan-in of + gates is not that important)

Regular Bounded-Depth Formulas

+

×
·· ·

×

Fan in a1

+
·· ·

+ +
·· ·

+

Fan in p1

Fan in a2
...

[KSS14]

2d +1

• d +1 levels labeled ‘+’, d labeled ‘×’
• Total degree: ∏d

i=1 pi

(actually fan-in of + gates is not that important)

Regular Bounded-Depth Formulas

+

×
·· ·

×

Fan in a1

+
·· ·

+ +
·· ·

+

Fan in p1

Fan in a2
...

[KSS14]

2d +1

• d +1 levels labeled ‘+’, d labeled ‘×’
• Total degree: ∏d

i=1 pi

(actually fan-in of + gates is not that important)

Reduction to Depth 4

k “Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k “Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ

β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Reduction to Depth 4

k

“Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.

• Improving the depth d case
Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You

