SUBEXPONENTIAL SIZE HITTING SETS

 FOR BOUNDED DEPTH MULTILINEAR FORMULASBen Lee Volk (Tel Aviv University)
Joint work with
Rafael Oliveira (Princeton University)
Amir Shpilka (Tel Aviv University)

ARITHMETIC CIRCUITS

ARITHMETIC CIRCUITS

ARITHMETIC CIRCUITS

ARITHMETIC CIRCUITS

ARITHMETIC FORMULAS
Underlying graph is a tree.

ARITHMETC FORMULAS

Underlying graph is a tree.

Multilinear Formula: every node computes a multilinear polynomial.

POLYNOMIAL IDENTITY TESTING

Given $C\left(x_{1}, \ldots, x_{n}\right)$, decide deterministically whether $C \equiv 0$.

POLYNOMIAL IDENTITY TESTING

Given $C\left(x_{1}, \ldots, x_{n}\right)$,
decide deterministically whether $C \equiv 0$.

White Box
Can "see" the circuit.

POLYNOMIAL IDENTITY TESTING

Given $C\left(x_{1}, \ldots, x_{n}\right)$, decide deterministically whether $C \equiv 0$.

White Box
Can "see" the circuit.

Black Box

POLYNOMIAL IDENTITY TESTING

Given $C\left(x_{1}, \ldots, x_{n}\right)$ from a class \mathcal{C} decide deterministically whether $C \equiv 0$.

White Box
Can "see" the circuit.

Black Box

POLYNOMIAL IDENTITY TESTING

Given $C\left(x_{1}, \ldots, x_{n}\right)$ from a class \mathcal{C} decide deterministically whether $C \equiv 0$.

White Box
Can "see" the circuit.

Black Box

Black Box PIT \equiv explicit hitting set.
Hitting Set for class \mathcal{C} : A set $\mathcal{H} \subseteq \mathbb{F}^{n}$ such that for every non-zero $f \in \mathcal{C}$ there exists $\bar{\alpha} \in \mathcal{H}$ such that $f(\bar{\alpha}) \neq 0$.

RELLTED WORK

PIT for bounded depth circuits:

RELLATED WORK

PIT for bounded depth circuits:
Model

Running time

RELLATED WORK

PIT for bounded depth circuits:

Model

Depth 3 circuits
Bounded top fan-in

Running time
Poly time, BB
[Kayal-Saraf],
[Saxena-Seshadri]

related work

PIT for bounded depth circuits:

Model

Depth 3 circuits
Bounded top fan-in

Multilinear Depth 4, Poly time, BB Bounded top fan-in

Running time
Poly time, BB
[Kayal-Saraf],
[Saxena-Seshadri]
[Saraf-Volkovich]

RELATED WORK

PIT for bounded depth circuits:

Model

Depth 3 circuits Poly time, BB Bounded top fan-in

Multilinear Depth 4, Poly time, BB Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB Bounded distance

Running time
[Kayal-Saraf], [Saxena-Seshadri]
[Saraf-Volkovich]
[Agrawal-Gurjar-
Korwar-Saxena]

RELATED WORK

PIT for bounded depth circuits:

Model

Depth 3 circuits Poly time, BB Bounded top fan-in

Multilinear Depth 4, Poly time, BB Bounded top fan-in

Multilinear Depth 3, Quasi-poly, BB Bounded distance

Running time

Poly time, BB [Kayal-Saraf], [Saxena-Seshadri]
[Saraf-Volkovich]
[Agrawal-Gurjar-
Korwar-Saxena]
(and many others)

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} \quad \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}}
$$

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
\begin{array}{ll}
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} & \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+4 \delta / 3}\right)} & \text { for depth } 4 \text { formulas of size } 2^{n^{\delta}}
\end{array}
$$

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
\begin{array}{ll}
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} & \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+4 \delta / 3}\right)} & \text { for depth } 4 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{1-1 / e x p(d)}\right)} & \text { for regular* depth } d \text { formulas of size } 2^{n^{1 / e x p}(d)}
\end{array}
$$

*All nodes in the same layer have the same fan-in.

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
\begin{array}{ll}
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} & \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+4 \delta / 3}\right)} & \text { for depth } 4 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{1-1 / e x p(d)}\right)} & \text { for regular* depth } d \text { formulas of size } 2^{n^{1 / e x p(d)}}
\end{array}
$$

*All nodes in the same layer have the same fan-in.
All constructible in time poly $(|\mathcal{H}|)$.

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
\begin{array}{ll}
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} & \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+4 \delta / 3}\right)} & \text { for depth } 4 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{1-1 / \exp (d)}\right)} & \text { for regular* depth } d \text { formulas of size } 2^{n^{1 / e x p}(d)}
\end{array}
$$

*All nodes in the same layer have the same fan-in.
All constructible in time poly $(|\mathcal{H}|)$.
\Longrightarrow lower bounds of $2^{\tilde{\Omega}\left(n^{1 / 2}\right)}$ (depth 3), $2^{\tilde{\Omega}\left(n^{1 / 4}\right)}$ (depth 4) and $2^{\tilde{\Omega}\left(n^{1 / \exp (d)}\right)}$ (depth d) for polynomials in $\operatorname{DTIME}\left(2^{O(n)}\right)$.

THIS TALK

Hitting sets for bounded depth multilinear formulas, with

$$
\begin{array}{ll}
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)} & \text { for depth } 3 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+4 \delta / 3}\right)} & \text { for depth } 4 \text { formulas of size } 2^{n^{\delta}} \\
|\mathcal{H}|=2^{\tilde{O}\left(n^{1-1 / \exp (d)}\right)} & \text { for regular* depth } d \text { formulas of size } 2^{n^{1 / e x p}(d)}
\end{array}
$$

*All nodes in the same layer have the same fan-in.
All constructible in time poly $(|\mathcal{H}|)$.
\Longrightarrow lower bounds of $2^{\tilde{\Omega}\left(n^{1 / 2}\right)}$ (depth 3), $2^{\tilde{\Omega}\left(n^{1 / 4}\right)}$ (depth 4) and $2^{\tilde{\Omega}\left(n^{1 / \exp (d)}\right)}$ (depth d) for polynomials in $\operatorname{DTIME}\left(2^{O(n)}\right)$.
(slightly better lower bounds known but not via hitting sets)

PROOF TECHNIQUE

"Reduction" to Read Once Algebraic Branching Program:

PROOF TECHNIQUE

"Reduction" to Read Once Algebraic Branching Program:

- Each $s \rightarrow t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \rightarrow t$ paths
- Read Once: Variable x_{i} read only at level i

PROOF TECHNIOUE

"Reduction" to Read Once Algebraic Branching Program:

- Each $s \rightarrow t$ path computes multiplication of edge labels
- Program computes the sum of those over all $s \rightarrow t$ paths
- Read Once: Variable x_{i} read only at level i

PROOF TECHNIQUE

"Reduction" to Read Once Algebraic Branching Program:

Theorem [FS13, FSS14, AGKS14]: \exists explicit hitting set for ROABPs of width w of size poly $(n, w)^{O(\log n)}$.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Sum of products of linear functions with disjoint support:

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Sum of products of linear functions with disjoint support:

... if every linear function has only 1 variable in its support, the polynomial is computed by width M ROABP.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

What if we had a partition S_{1}, \ldots, S_{k} such that all the vars in S_{i} appear in different linear functions?
(for every \times gate and for every i)

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

What if we had a partition S_{1}, \ldots, S_{k} such that all the vars in S_{i} appear in different linear functions?
(for every \times gate and for every i)
Think of the polynomial in the vars of S_{1} over $\mathbb{F}\left(S_{2} \cup \cdots \cup S_{k}\right)$.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

What if we had a partition S_{1}, \ldots, S_{k} such that all the vars in S_{i} appear in different linear functions?
(for every \times gate and for every i)
Think of the polynomial in the vars of S_{1} over $\mathbb{F}\left(S_{2} \cup \cdots \cup S_{k}\right)$. It has ROABP of width M. Plug in hitting set on the vars of S_{1}.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

What if we had a partition S_{1}, \ldots, S_{k} such that all the vars in S_{i} appear in different linear functions? (for every \times gate and for every i)

Think of the polynomial in the vars of S_{1} over $\mathbb{F}\left(S_{2} \cup \cdots \cup S_{k}\right)$. It has ROABP of width M. Plug in hitting set on the vars of S_{1}.
\exists assignment which keeps the polynomial non-zero.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

What if we had a partition S_{1}, \ldots, S_{k} such that all the vars in S_{i} appear in different linear functions?
(for every \times gate and for every i)
Think of the polynomial in the vars of S_{1} over $\mathbb{F}\left(S_{2} \cup \cdots \cup S_{k}\right)$. It has ROABP of width M. Plug in hitting set on the vars of S_{1}.
\exists assignment which keeps the polynomial non-zero.
Now do the same for S_{2}, S_{3}, \ldots

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_{i} contains at most 1 variable

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_{i} contains at most 1 variable
- Plug in hitting sets for width M ROABPs on the variables of each S_{i}

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_{i} contains at most 1 variable
- Plug in hitting sets for width M ROABPs on the variables of each S_{i}
If all linear functions in the circuit had small support we might expect a random partition to work.

DEPTH 3 MULTILINEAR FORMULAS: $\Sigma \Pi \Sigma$

Plan:

- Partition the variables into $n^{1-\varepsilon}$ disjoint sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, and hope that the intersection of every linear function with every S_{i} contains at most 1 variable
- Plug in hitting sets for width M ROABPs on the variables of each S_{i}
If all linear functions in the circuit had small support we might expect a random partition to work.

Problems:

- What about linear functions which contain a lot of variables?
- How to find the partition?

REDUCING BOTTOM SUPPORT

Solution to Problem \#1: get rid of linear functions with large support (more than n^{ε} is a problem)

REDUCING BOTTOM SUPPORT

Solution to Problem \#1: get rid of linear functions with large support (more than n^{ε} is a problem)

$$
\ell_{1}(\overline{\mathbf{x}})=\sum_{i} \alpha_{i} x_{i}
$$

REDUCING BOTTOM SUPPORT

Solution to Problem \#1: get rid of linear functions with large support (more than n^{ε} is a problem)

$\ell_{1}(\overline{\mathbf{x}})=\sum_{i} \alpha_{i} x_{i}$

REDUCING BOTTOM SUPPORT

- Only care about linear functions with $\geq n^{\varepsilon}$ vars, so \exists var x_{i} which works for $1 / n^{1-\varepsilon}$ of them.

REDUCING BOTTOM SUPPORT

- Only care about linear functions with $\geq n^{\varepsilon}$ vars, so \exists var x_{i} which works for $1 / n^{1-\varepsilon}$ of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \Longrightarrow no linear function remaining with more than n^{ε} vars.

REDUCING BOTTOM SUPPORT

- Only care about linear functions with $\geq n^{\varepsilon}$ vars, so \exists var x_{i} which works for $1 / n^{1-\varepsilon}$ of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \Longrightarrow no linear function remaining with more than n^{ε} vars.
How to get black box access to $\frac{\partial f}{\partial x_{i_{1}} \cdots \partial x_{i_{t}}}$?

REDUCING BOTTOM SUPPORT

- Only care about linear functions with $\geq n^{\varepsilon}$ vars, so \exists var x_{i} which works for $1 / n^{1-\varepsilon}$ of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \Longrightarrow no linear function remaining with more than n^{ε} vars.
How to get black box access to $\frac{\partial f}{\partial x_{i_{1}} \cdots \partial x_{i_{t}}}$?

$$
\frac{\partial f}{\partial x_{i}}=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) .
$$

REDUCING BOTTOM SUPPORT

- Only care about linear functions with $\geq n^{\varepsilon}$ vars, so \exists var x_{i} which works for $1 / n^{1-\varepsilon}$ of them.
- Derive w.r.t $\leq n^{1-\varepsilon} \log M$ vars \Longrightarrow no linear function remaining with more than n^{ε} vars.
How to get black box access to $\frac{\partial f}{\partial x_{i_{1}} \cdots \partial x_{i_{t}}}$?

$$
\frac{\partial f}{\partial x_{i}}=f\left(x_{1}, \ldots, x_{i-1}, 1, x_{i+1}, \ldots, x_{n}\right)-f\left(x_{1}, \ldots, x_{i-1}, 0, x_{i+1}, \ldots, x_{n}\right) .
$$

Applied repeatedly, each query to the derivative is simulated by 2^{t} queries to f.

VARIABLE PARTITION

Solution to Problem \#2: Settle for less.

VaRIABLL PARTITION

Solution to Problem \#2: Settle for less.
Assume all linear functions have support $\leq n^{\varepsilon}$.
If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_{i} :

1. No linear function intersects S_{i} in more than n^{δ} vars.

VarIABLE PARTITION

Solution to Problem \#2: Settle for less.
Assume all linear functions have support $\leq n^{\varepsilon}$.
If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_{i} :

1. No linear function intersects S_{i} in more than n^{δ} vars.
2. On every \times gate, the \# of linear functions which intersect S_{i} in at least 2 vars is at most n^{δ}.

VarIABLE PABTITION

Solution to Problem \#2: Settle for less.
Assume all linear functions have support $\leq n^{\varepsilon}$.
If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_{i} :

1. No linear function intersects S_{i} in more than n^{δ} vars.
2. On every \times gate, the \# of linear functions which intersect S_{i} in at least 2 vars is at most n^{δ}.

Brute-force expand linear functions of the second type to get ROABP of width $M \cdot n^{n^{\delta}}$ in vars of S_{i}.

VarIABLE PABTITION

Solution to Problem \#2: Settle for less.
Assume all linear functions have support $\leq n^{\varepsilon}$.
If we partition the vars randomly to $n^{1-\varepsilon}$ sets $S_{1}, \ldots, S_{n^{1-\varepsilon}}$, then with high probability, for every set S_{i} :

1. No linear function intersects S_{i} in more than n^{δ} vars.
2. On every \times gate, the \# of linear functions which intersect S_{i} in at least 2 vars is at most n^{δ}.

Brute-force expand linear functions of the second type to get ROABP of width $M \cdot n^{n^{\delta}}$ in vars of S_{i}.

Deterministic version: Partition vars according to n^{δ}-wise independent family of hash functions.

WRAP-UP: DEPTH 3 CASE

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\left(\begin{array}{c}n^{1-\varepsilon} \log M\end{array}\right) \cdot 2^{n^{1-\varepsilon} \log M}$

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions
Cost: $n^{n^{\delta}}$

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions
Cost: $n^{n^{\delta}}$
3. Plug in a copy of the ROABP hitting set for each set S_{i}

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions
Cost: $n^{n^{\delta}}$
3. Plug in a copy of the ROABP hitting set for each set S_{i}

Cost: $\left(M \cdot n^{n^{\delta}}\right)^{\log n \cdot n^{1-\varepsilon}}$

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions
Cost: $n^{n^{\delta}}$
3. Plug in a copy of the ROABP hitting set for each set S_{i}

Cost: $\left(M \cdot n^{n^{\delta}}\right)^{\log n \cdot n^{1-\varepsilon}}$
Optimizing parameters: $|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)}$.

WRAP-UP: DEPTH 3 CASE

1. Pick $n^{1-\varepsilon} \log M$ vars and compute a black box for the derivative of f with respect to those vars
Cost: $\binom{n}{n^{1-\varepsilon} \log M} \cdot 2^{n^{1-\varepsilon} \log M}$
2. Partition remaining vars to $n^{1-\varepsilon}$ sets using a n^{δ}-wise indep. family of hash functions
Cost: $n^{n^{\delta}}$
3. Plug in a copy of the ROABP hitting set for each set S_{i}

Cost: $\left(M \cdot n^{n^{\delta}}\right)^{\log n \cdot n^{1-\varepsilon}}$
Optimizing parameters: $|\mathcal{H}|=2^{\tilde{O}\left(n^{2 / 3+2 \delta / 3}\right)}$.
Lower bound: set $\delta=1 / 2-O(\log \log n / \log n)$. Find non-zero polynomial which vanishes over \mathcal{H}.

DEPTH 4 MULTILINEAR FORMULAS: ЕПटП

Sum of products of sparse polynomials with disjoint support:

DEPTH 4 MULTILINEAR FORMULAS: ГПटП

Sum of products of sparse polynomials with disjoint support:

... what has changed?

REDUCING BOTTOM SUPPORT: DEPTH 4 VERSION

- Can't get rid f_{1} by taking a derivative according to x_{1}

REDUCING BOTTOM SUPPORT: DEPTH 4 VERSION

- Can't get rid f_{1} by taking a derivative according to x_{1}
- But: for every multilinear polynomial f and variable x, either setting $x=0$ or taking derivative with respect to x reduces the sparsity by at least half

REDUCING BOTTOM SUPPORT: DEPTH 4 VERSION

- Can't get rid f_{1} by taking a derivative according to x_{1}
- But: for every multilinear polynomial f and variable x, either setting $x=0$ or taking derivative with respect to x reduces the sparsity by at least half
- Similar argument as before: we only care about high-support polynomials. \exists var x_{i} such that either in $\left.f\right|_{x_{i}=0}$ or $\frac{\partial f}{\partial x_{i}}$ the total sparsity of bad polynomials is reduced by a factor of $1-\frac{1}{2 n^{1-\varepsilon}}$

REDUCING BOTTOM SUPPORT: DEPTH 4 VERSION

- Can't get rid f_{1} by taking a derivative according to x_{1}
- But: for every multilinear polynomial f and variable x, either setting $x=0$ or taking derivative with respect to x reduces the sparsity by at least half
- Similar argument as before: we only care about high-support polynomials. \exists var x_{i} such that either in $\left.f\right|_{x_{i}=0}$ or $\frac{\partial f}{\partial x_{i}}$ the total sparsity of bad polynomials is reduced by a factor of $1-\frac{1}{2 n^{1-\varepsilon}}$
- Repeat $O\left(n^{1-\varepsilon} \log s\right)$ times to eliminate all high-support polynomials

REDUCIIG BOTTOM SUPPORT: DEPTH 4 VERSION

- Can't get rid f_{1} by taking a derivative according to x_{1}
- But: for every multilinear polynomial f and variable x, either setting $x=0$ or taking derivative with respect to x reduces the sparsity by at least half
- Similar argument as before: we only care about high-support polynomials. \exists var x_{i} such that either in $\left.f\right|_{x_{i}=0}$ or $\frac{\partial f}{\partial x_{i}}$ the total sparsity of bad polynomials is reduced by a factor of $1-\frac{1}{2 n^{1-\varepsilon}}$
- Repeat $O\left(n^{1-\varepsilon} \log s\right)$ times to eliminate all high-support polynomials
- Continue as before

REGULAR BOUNDED-DEPTH FORMULAS

[KSS14]

Fan in a_{1}

Fan in p_{1}

Fan in a_{2}

REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_{1}

Fan in p_{1}

Fan in a_{2}

- $d+1$ levels labeled '+', d labeled ' \times '

REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_{1}

Fan in p_{1}

Fan in a_{2}

- $d+1$ levels labeled '+', d labeled ' \times '
- Total degree: $\prod_{i=1}^{d} p_{i}$

REGULAR BOUNDED-DEPTH FORMULAS

Fan in a_{1}

Fan in p_{1}

Fan in a_{2}

- $d+1$ levels labeled ' + ', d labeled ' x '
- Total degree: $\prod_{i=1}^{d} p_{i}$
(actually fan-in of + gates is not that important)

REDUCTION TO DEPTH 4

REDUCTION TO DEPTH 4

lower part: $\operatorname{deg} \leq n^{1-1 / \exp (d)}$ "sparse" polynomial replace w/ subexp. $\Sigma \Pi \mathrm{ckt}$

REDUCTION TO DEPTH 4

upper part: expand all products from level k upwards, at most $|C|^{\Pi_{i=1}^{k} p_{i}}$ summands

$$
\beta / \alpha \geq 3 \quad=k
$$

lower part: $\operatorname{deg} \leq n^{1-1 / \exp (d)}$
"sparse" polynomial
replace w/ subexp. $\Sigma \Pi \mathrm{ckt}$

REDUCTION TO DEPTH 4

upper part: expand all
products from level k upwards, at most $|C|^{\Pi_{i=1}^{k} p_{i}}$ summands

lower part: $\operatorname{deg} \leq n^{1-1 / \exp (d)}$
"sparse" polynomial
replace w/ subexp. $\Sigma \Pi \mathrm{ckt}$

REDUCTION TO DEPTH 4

upper part: expand all products from level k upwards, at most $|C|^{\Pi_{i=1}^{k} p_{i}}$ summands

lower part: $\operatorname{deg} \leq n^{1-1 / \exp (d)}$ "sparse" polynomial replace w/ subexp. $\Sigma \Pi \mathrm{ckt}$
such a large gap is required to match the depth 4 parameters. will be nice to improve.

OPEN PROBLEMS

OPEN PROBLEMS

- Smaller hitting sets for depth 3 and depth 4 formulas.

OPEN PROBLEMS

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth d case

OPEN PROBLEMS

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth d case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

OPEN PROBLEMS

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth d case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

- non-reg depth d formulas?

OPEN PROBLEMS

- Smaller hitting sets for depth 3 and depth 4 formulas.
- Improving the depth d case

Either by improving the depth 4 parameters, or the reduction to depth 4 formulas

- non-reg depth d formulas?

THANK YOU

