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Underlying graph is a tree.
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Multilinear Formula: every node computes a multilinear
polynomial.
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Polynomial Identity Testing
Given C (x1, . . . , xn) from a class C

decide deterministically whether C ≡ 0.

White Box

Can “see” the circuit.

Black Box

f (x1, . . . , xn)α f (α)

Black Box PIT ≡ explicit hitting set.
Hitting Set for class C: A set H⊆ Fn such that for every
non-zero f ∈C there exists α ∈H such that f (α ) ̸= 0.
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|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ
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This Talk
Hitting sets for bounded depth multilinear formulas, with

|H| = 2Õ(n2/3+2δ/3) for depth 3 formulas of size 2nδ

|H| = 2Õ(n2/3+4δ/3) for depth 4 formulas of size 2nδ

|H| = 2Õ(n1−1/exp(d)) for regular* depth d formulas of size 2n1/exp(d)

*All nodes in the same layer have the same fan-in.

All constructible in time poly(|H|).

=⇒ lower bounds of 2Ω̃(n1/2) (depth 3), 2Ω̃(n1/4) (depth 4) and
2Ω̃(n1/exp(d)) (depth d) for polynomials in DTIME(2O(n)).
(slightly better lower bounds known but not via hitting sets)
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Proof Technique
“Reduction” to Read Once Algebraic Branching Program:

s ...

x1 −1

x1 +2

x1 +9

...

x2 +1

3x2 ...
t

2xn −2

xn −4

xnWidth

Theorem [FS13, FSS14, AGKS14]: ∃ explicit hitting set for
ROABPs of width w of size poly(n, w)O(logn).
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Depth 3 Multilinear Formulas: ΣΠΣ

Sum of products of linear functions with disjoint support:

ℓ1(x ) ℓ2(y )

× × · · ·

ℓt (x )

×

+ M ≤ 2nδ

... if every linear function has only 1 variable in its support,
the polynomial is computed by width M ROABP.
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What if we had a partition S1, . . . ,Sk such that all the vars in Si

appear in different linear functions?
(for every × gate and for every i )

Think of the polynomial in the vars of S1 over F(S2 ∪·· ·∪Sk ).
It has ROABP of width M . Plug in hitting set on the vars of S1.

∃ assignment which keeps the polynomial non-zero.

Now do the same for S2,S3, . . .
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Plan:
• Partition the variables into n1−ε disjoint sets S1, . . . ,Sn1−ε ,

and hope that the intersection of every linear function with
every Si contains at most 1 variable

• Plug in hitting sets for width M ROABPs on the variables of
each Si

If all linear functions in the circuit had small support we might
expect a random partition to work.

Problems:

• What about linear functions which contain a lot of
variables?

• How to find the partition?
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Reducing Bottom Support

• Only care about linear functions with ≥ nε vars, so ∃ var xi

which works for 1/n1−ε of them.
• Derive w.r.t ≤ n1−ε log M vars =⇒ no linear function

remaining with more than nε vars.

How to get black box access to ∂ f

∂xi1 · · ·∂xi t

?

∂ f

∂xi
= f (x1, . . . , xi−1,1, xi+1, . . . , xn)− f (x1, . . . , xi−1,0, xi+1, . . . , xn).

Applied repeatedly, each query to the derivative is simulated by
2t queries to f .
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Variable Partition
Solution to Problem #2: Settle for less.

Assume all linear functions have support ≤ nε.
If we partition the vars randomly to n1−ε sets S1, . . . ,Sn1−ε , then
with high probability, for every set Si :

1. No linear function intersects Si in more than nδ vars.
2. On every × gate, the # of linear functions which intersect Si

in at least 2 vars is at most nδ.
Brute-force expand linear functions of the second type to get
ROABP of width M ·nnδ in vars of Si .

Deterministic version: Partition vars according to nδ-wise
independent family of hash functions.
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Wrap-up: Depth 3 case

1. Pick n1−ε log M vars and compute a black box for the
derivative of f with respect to those vars
Cost:

( n
n1−ε log M

) ·2n1−ε log M

2. Partition remaining vars to n1−ε sets using a nδ-wise indep.
family of hash functions
Cost: nnδ

3. Plug in a copy of the ROABP hitting set for each set Si

Cost: (M ·nnδ
)logn·n1−ε

Optimizing parameters: |H| = 2Õ(n2/3+2δ/3).
Lower bound: set δ= 1/2−O(loglogn/logn). Find non-zero
polynomial which vanishes over H.
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Sum of products of sparse polynomials with disjoint support:

f1(x ) f2(y )

× × · · ·

ft (x )

×

+ M ≤ 2nδ

Total Sparsity s ≤ |C |

... what has changed?
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high-support polynomials. ∃ var xi such that either in f |xi=0

or ∂ f
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the total sparsity of bad polynomials is reduced by a
factor of 1− 1

2n1−ε

• Repeat O(n1−ε log s) times to eliminate all high-support
polynomials
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Reduction to Depth 4

k “Large” Gap

∏k
i=1 pi ≤ nα

pk+1 ≥ nβ
β/α≥ 3

lower part: deg ≤ n1−1/exp(d)

“sparse” polynomial
replace w/ subexp. ΣΠ ckt

upper part: expand all
products from level k upwards,
at most |C |

∏k
i=1 pi summands

such a large gap is required to
match the depth 4 parameters.
will be nice to improve.
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Open Problems

• Smaller hitting sets for depth 3 and depth 4 formulas.
• Improving the depth d case

Either by improving the depth 4 parameters,
or the reduction to depth 4 formulas

• non-reg depth d formulas?

Thank You
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